
CLUSTER INNOVATION CENTRE, UNIVERSITY OF DELHI

Computational upgrades to the high energy physics data
analysis pipeline for future LHC/HL-LHC runs

By
Saransh Chopra

Under the supervision of
Dr. Jim Pivarski

Thesis submitted in fulfillment of the requirements for the degree of
Bachelor of Technology

Submission Date: July 11, 2024

Disclaimer

I confirm that this thesis is my own work and I have documented all sources and material used.

New Delhi, July 11, 2024 Saransh Chopa

Funding information

Support for this work was provided by NSF cooperative agreements OAC-1836650 and
PHY-2323298 (IRIS-HEP), and in receipt of a grant from the Department of Physics, Princeton
University.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1836650
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2323298

Abstract

High Energy Physics experiments, such as the Large Hadron Collider at CERN, produce petabytes
of data every year. Physicists require scalable and efficient scientific software to analyze and
perform physics on the obtained data.elemedis The initial frameworks and scientific software
developed for analyzing HEP data, such as ROOT (Brun et al. 2020), GEANT4 (Agostinelli et al.
2003), and BOOST (Boost 2015), were written in C and C++; hence, such software had and still
have a steep learning curve, especially for physicists with no programming background. Multiple
HEP ecosystems have emerged in languages that are comparatively easy to pick up, such as the
IRIS-HEP (Elmer et al. 2018) ecosystem in Python. This thesis began as a bid to implement the
remaining pieces of Automatic Differentiation in Awkward Arrays (Pivarski et al. 2018b), Vector
(Schreiner et al. b), and Coffea (Gray et al. 2023) but soon expanded to work on multiple other
computational upgrades to the IRIS-HEP ecosystem. More specifically, this thesis extends the
support of AD in Awkward Arrays, implements the Unified Histogram Interface (Schreiner et al.
2023b) for rebinning in boost-histogram (Schreiner et al. 2023a), migrates Coffea’s vector algebra
backend to Scikit-HEP/vector, and implements a symbolic backend in Vector. The work also
includes several computational upgrades specifically in Vector to meet its rapidly growing user
base. Finally, this thesis also includes development of a new Python package, cuda-histogram, to
support Histogramming on GPUs for HEP data analysis pipelines. The work carried out in the past
six months has already been integrated into the data analysis pipelines of physicists all around the
globe. Furthermore, the upcoming upgrade of the Large Hadron Collider to the High-Luminosity
Large Hadron Collider demands an even fine-grained suite of software, and the work carried out
during this thesis adds up to these upgrades.

Keywords: scientific computing, high energy physics, differentiable programming, analy-
sis systems, columnar analysis, vector algebra, histogramming, symbolic programming, GPU
programming

4

Dedicated to my late grandfather,
Chattar Sain Chopra

Acknowledgements

This thesis compiles the wide range of computational upgrades carried out on the Scikit-HEP or the
broader IRIS-HEP ecosystem in the past six months. First and foremost, I express my immense
gratitude to my supervisor, Jim Pivarski. This work was only possible with Jim guiding me in the
right direction. I am deeply grateful for everything I could absorb through him during the past six
months, and thankful to him for always being there as a mentor and a friend. The contract itself
(and the extension in the contract) was only possible through Peter Elmer. I am thankful for his
time, efforts, and consideration. I am lucky enough to have worked with an organization as unique
as IRIS-HEP. I am grateful to everyone at IRIS-HEP, especially David Lange, for organizing the R2
meetups and Matthew Feickert for coordinating much of my spread-up work.

Given that my work encompassed multiple pieces or libraries of the data analysis pipeline, I
was fortunate enough to be mentored by many other people over a short duration of time. I cannot
miss thanking Henry Schreiner for mentoring me on the Unified Histogram Interface project and
constantly acting as a source of inspiration. I would also like to thank Lindsey Gray and Nicholas
Smith for supervising me and being patient while I migrated Coffea’s internals to Scikit-HEP/vector.
Even though Alexander Held could not supervise me directly to work on Automatic Differentiability
for the Analysis Grand Challenge, I am grateful for all the always helpful discussions I have had
with him.

Apart from supervisors, this work would not have been possible without the friends I made
at CERN. Everything added up to this work, from talking about the bugs we are trying to solve to
playing a game of cards at midnight. I will also take this opportunity to thank my friends and family
back home. The ten days I spent in India were fantastic, only because I met these amazing people
every day. The thesis itself was written through the constant pushes by Mel. Thank you everyone
for supporting and being there for me while writing this.

Finally, I would like to thank my institution, Cluster Innovation Centre, University of Delhi,
for allowing me to write a thesis at CERN. Their constant support and flexibility with the process is
commendable. I am incredibly grateful to have studied and worked under Prof. Shobha Bagai, who
has acted as an informal mentor throughout the four years of my degree.

6

Contents

Abstract 4

Acknowledgements 6

Abbreviations 1

Preface 2

I Fundamentals 3

1 An introduction to Computation in High Energy Physics 4
1.1 High Energy Physics at CERN . 4
1.2 Computational needs for High Energy Physics . 5
1.3 The Scikit-HEP ecosystem . 6

II Computational Upgrades 7

2 Automatic differentiation for the Scikit-HEP ecosystem 8
2.1 Automatic differentiation and JAX . 8

2.1.1 Chain rule . 8
2.1.2 Forward mode . 8
2.1.3 Reverse mode . 9
2.1.4 Differentiable programming with JAX . 9

2.2 Need for automatic differentiation in HEP analysis pipelines 10
2.3 Automatic differentiation and Awkward Arrays 10
2.4 Automatic differentiation and the Analysis Grand Challenge 14

3 Unified Histogram Interface for variable axis rebinning 17
3.1 The histogramming mini-ecosystem . 17
3.2 Unified Histogram Interface . 18
3.3 The problem of non-uniform axis rebinning . 18
3.4 Implementing UHI for rebinning in boost-histogram 20

7

4 Computational upgrades to Vector 23
4.1 A quick introduction to vector . 23
4.2 The recent surge in Vector’s usage . 26
4.3 Preparing Vector for future LHC/HL-LHC runs 26

5 Coffea’s new backend for vector algebra 34
5.1 Coffea and its vector modules . 34
5.2 Coffea’s vector to Scikit-HEP/vector . 35
5.3 Implementing Scikit-HEP/vector as a backend for Coffee’s vector classes 36

6 Vector’s symbolic backend for theoretical computations 39
6.1 Symbolic programming and SymPy . 39
6.2 Need for a symbolic backend . 39
6.3 Implementing a symbolic backend in Vector . 40

7 Bringing histograms to GPUs: cuda-histogram 43
Bibliography . 44

Listings

2.1 Awkward’s JAX backend in code. 11
2.2 Differentiating through a chain of ufuncs, Awkward’s mean function, and binary

operations using Awkward’s JAX backend. 12
2.3 Awkward’s JAX backend does not clash with Numba decorators and functions. . . 13
2.4 Coffea using Awkward’s JAX backend to support AD. 14
2.5 Vector using Awkward’s JAX backend to support AD. 15
3.1 Constructing a 1D histogram with Regular axis using boost-histogram. 19
3.2 Rebinning the histogram with a factor of 0.5. 19
3.3 A new Rebinner class following the UHI protocol. 20
3.4 Rebinning the histogram with a factor of 0.5 and in groups of 1, 2, 3. 21
3.5 Rebinning a 2D histogram with the new API. 22
4.1 Vector constructors. 24
4.2 Vector methods. 25
4.3 Fixes and features introduced in Vector v1.2. 27
4.4 Fixes and features introduced in Vector v1.3. 29
4.5 Fixes and features introduced in Vector v1.3.1. 30
4.6 Fixes and features introduced in Vector v1.4. 31
4.7 Fixes and features introduced in Vector v1.4.1. 32
5.1 A short analysis example using Coffea. 34
5.2 Constructing a 4D momentum vector with Coffea. 36
5.3 Creating a 4D momentum vector with Scikit-HEP/vector 37
6.1 Performing deltaR on Object vectors. 41
6.2 Performing deltaR on SymPy vectors. 41

9

List of Figures

2.1 Representing an Awkward array in the memory (Pivarski). 11
2.2 Interoperability between Awkward’s Array and JAX’s DeviceArray. 11

3.1 Scikit-HEP’s mini-ecosystem for Histograms-as-an-Object. 18
3.2 Regular axis with 10 bins. 19
3.3 Regular axis with 20 bins. 19
3.4 Variable axis with 3 bins. 19
3.5 Implementation of UHI for non-uniform rebinning in boost-histogram. 21

5.1 Switching Coffea’s vector algebra backend. 36

6.1 Implementation of Vector’s SymPy backend. 40

10

List of Tables

1 Abbreviations/notations used across this thesis. 1

1.1 A few Scikit-HEP projects and their functionality. 6

11

Abbreviations

CERN Conseil Européen pour la Recherche Nucléaire
HEP High Energy Physics
LHC Large Hadron Collider
HL-LHC High Luminosity - Large Hadron Collider
ROOT Rapid Object-Oriented Technology
AD Automatic Differentiation
UHI Unified Histogram Interface
Coffea Columnar Framework For Effective Analysis

Table 1: Abbreviations/notations used across this thesis.

1

Preface

If you told middle school Saransh that he would one day not only get to work but also write his thesis
at CERN, he would lose his mind. I know you wanted to be a physicist, and Indian society pushed
you into engineering, but you still navigated your way. Now, look at your writing software for high
energy and nuclear physics. I still do not know how I ended up here, but it all started with a Slack
message to Peter, and the next thing I knew, I was sitting at R1 with Aaron, Aryaman, Vaibhav, and
Manasvi having dinner. All the morning R2 meetups with croissants by David, climbing sessions
with Prajwal, R1 lunches with Aaron, weekend night stays at Aryaman’s place, kabbo games at the
Schuman hostel with Alok, Amal, Aryan, and Vaibhav, and car rides with Sofian and Jordan have
contributed to this thesis as much as my work in Building 8 has done.

I will forever be grateful to the entire IRIS-HEP team for funding me to work under such
incredible people on such intriguing projects. Each computational upgrade mentioned in this thesis
was a never-before-seen challenge for me, teaching me invaluable skills. The sheer amount of
knowledge that I absorbed while performing these upgrades ranged from pure mathematics (what is
the physical significance of a Jacobian?) to a little bit of Physics (why does Vector’s new symbolic
backend only work for positive time-like vectors??) to software engineering principles (what is the
best way to migrate the vector algebra backend of Coffea to Scikit-HEP/vector without annoying
the users?). This is the most diverse range of work I have carried out in such a short time, and I was
able to do it because of a highly supportive mentor and an always-ready-to-help team.

I was a bit hesitant before moving to Geneva, and I remember how lonely and hard the first
few weeks were, but now it’s even harder to leave. I started liking Geneva so much that I ended
up extending my contract by two months, pushing the joining date of an in-hand full-time role
further. This thesis gave me an opportunity to travel around Europe at the age of 22, an experience
I will never forget. When I look back at 2024, all I will remember is sipping Aperol in Italy,
overcoming my fear of seafood in Spain, slowing down the time after having a space cake in the
Netherlands, devouring kebabs and baklavas in Turkey, buttering a croissant in France, chugging a
beer in Germany, dipping things in cheese in Switzerland, and taking a sauna in Finland. These
experiences would not have been possible without the lifelong friends I made at CERN. Finally,
Switzerland gave me something very special, my girlfriend. I will always have a reason to revisit
Switzerland.

Any place I work in the remaining years of my life will never come close to CERN. It has
been an absolute pleasure being at a place that is at the center of the modern scientific revolution.
Leaving CERN after finishing this thesis will be one of the hardest things I have done in my life,
but rest assured, I will be back someday. Younger Saransh will be so proud. I hope you have fun
reading the rest of this thesis, which will get a bit more technical than this preface. Happy reading!

2

Part I

Fundamentals

3

Chapter 1

An introduction to Computation in High
Energy Physics

What is a Computer Science student doing at CERN? This chapter introduces the computations
required by experiments and the HEP research at CERN. Before reaching the computational part, it
is imperative to outline how HEP research is carried out at CERN’s flagship experiment, the Large
Hadron Collider.

1.1 High Energy Physics at CERN
CERN or the Conseil européen pour la Recherche Nucléaire (European Organisation for Nuclear
Research), was founded in 1952 with the aim of collecting researchers at a single, state-of-the-art
facility to combat the after-effects of World War 2. Since then, CERN has grown exponentially
and is now known for HEP and carrying out incredible research in engineering, computer science,
and pure sciences other than physics. CERN houses multiple cutting-edge experiments with one
goal: studying the universe at the atomic level. The flagship experiment of CERN, the LHC
or the Large Hadron Collider, is a 27-kilometer ring situated 100 meters underground, capable
of colliding particles such as protons as well as heavy ions. The LHC is the world’s largest
experiment and the most powerful particle accelerator ever built. The high-energy particle beams
are accelerated at almost the speed of light in opposite directions and are guided in a circular track
using superconducting electromagnets.

The particles start as a Hydrogen atom and are accelerated in Linac4 (Bertone et al. 2011), a
linear accelerator, before passing into the Proton Synchrotron Booster (Reich). These high-energy
beams are stripped off of their electrons when they leave Linac4 and are passed onto the Proton
Synchrotron (ps 1962) next. Once accelerated at a threshold, the beams are redirected to the Super
Proton Synchrotron (Doble et al. 2017). Until this step, the beams rotate in a single direction, but
the beams split into two and go in opposite directions once they are released from the Super Proton
Synchrotron into the Large Hadron Collider,

The collider houses four broad experiments or detectors: ATLAS (Aad et al. 2008), CMS
(Compact Muon Solenoid) (Chatrchyan et al. 2008), LHCb (Large Hadron Collider beauty) (Alves
et al. 2008), and ALICE (A Large Ion Collider Experiment) (Aamodt et al. 2008). ATLAS and CMS

4

5

are two general-purpose detectors built with the same goal but different approaches. The particles
collide at the center of these detectors, and the detectors take a snapshot of the collision event for
the physicists. ATLAS and CMS can register the created particles’ paths, momentum, and energy.
Additionally, CMS is also involved in searching for extra dimensions and particles that could make
up dark matter. On the other hand, the LHCb and the ALICE experiments work differently from the
two general-purpose detectors. LHCb investigates the differences between matter and antimatter
by studying the beauty quark, and ALICE records the collisions of heavy ions (such as Lead and
Oxygen ions) to examine the state of the universe that existed right after its birth by producing
quark-gluon plasma.

The particle collisions transform energy to produce particles that might not readily exist in
nature. The created particles travel in a straight line, but electromagnets are used to curve their
trajectories and gather information about them. Physicists use several data points and types of
equipment to gather evidence about the newly produced particles. For instance, a particle with a
lower momentum is deflected more by the magnetic field than a particle with a higher momentum.
Several other factors, including but not limited to energy loss (measured by calorimeters), the
trajectory of the particles (reconstructed using tracking devices and machine learning algorithms),
the emittance of Cherenkov radiation, particle’s velocity, and particle’s characteristic (muons can
pass through most of the matter) are used at HEP experiments to gather information about the
collision event. The unstable particles created during collisions further decay before being detected,
thus creating a chain of decay that can be backtracked by applying physics to the gathered data.

1.2 Computational needs for High Energy Physics
The work at CERN operates at the intersection of Engineering, Computer Science, and pure Sciences
like Physics and Mathematics. The particle collisions in the detectors generate tons of data. This data
goes through advanced trigger systems that filter the events and flow them to the storage facilities.
The collected data requires state-of-the-art computational methods for analyzing and extracting
physics. CERN’s computational infrastructure ranges from OpenStack (Rosado & Bernardino
2014), an open-source Infrastructure-as-a-Service cloud platform, to ROOT, an analysis framework
for high-energy data, to Zenodo (European Organization For Nuclear Research & OpenAIRE 2013),
and open source, open access, open science platform, to finally, Geant4, a simulation toolkit for
high energy physics.

This thesis focuses on developing the data analysis tools or pipelines used at CERN to perform
physics with the data captured by CERN’s detectors. The particle collisions at the LHC produce a
petabyte of data each second, which is stored in places like the CERN’s data center. CERN has made
numerous technological advancements to handle and process the sheer amount of data produced.
For instance, the problem of sharing data and information amongst scientists led to the development
of the World Wide Web at CERN. Analysis of this ever-increasing data has been challenging since
the inception of CERN, and several efforts are in place to make this easier as time passes. Moreover,
with the upcoming upgrade of the LHC to the HL-LHC, it has become imperative to improve the
existing software suites to handle the surge in incoming data.

ROOT, started in 1995, is CERN’s first comprehensive and still functioning in-house solution

6

to the challenges faced by physicists while analyzing HEP data. ROOT provides physicists with
the ability to read, write, analyze, mine, and plot the data, as well as interactively play with it. The
original ROOT framework is written in C++, making it highly efficient and scalable, but also making
it infamous amongst physicists for having an extremely steep learning curve. ROOT does provide
bindings in other languages, such as Python and R, but the comfort of writing code using these
bindings comes at the cost of speed and efficiency. Recent efforts have been made to write HEP
software in interpreted and just-in-time compiled languages from scratch. These new frameworks
and libraries are slowly being integrated at CERN, but ROOT remains the most used software for
data analysis for HEP.

1.3 The Scikit-HEP ecosystem
The Scikit-HEP (Rodrigues et al. 2020) ecosystem provides tools for analyzing HEP data using
Python. The project is primarily maintained by IRIS-HEP, a software institute developing and
working on the challenges of data-intensive scientific research at the HL-LHC experiment at CERN.
The Scikit-HEP ecosystem is a modular ecosystem providing users with an interface for datasets,
aggregations, modeling, simulation, and visualization. The ecosystem blends well with the other
Python ecosystems and even C++ high-energy frameworks like ROOT. The ecosystem is already
used within multiple HEP experiments in and outside CERN. Further, CERN’s software pipeline,
including ROOT, readily adopts bits and pieces from the Scikit-HEP ecosystem for improvements.

Library Function
Awkward Array Manipulate JSON-like data with NumPy-like idioms
Vector Manipulate Lorentz, 3D, and 2D vectors
Uproot (Pivarski et al. 2017) ROOT I/O in pure Python and NumPy
Uproot Browser Terminal browser and tools for ROOT files
Boost-histogram Python bindings for the C++14 Boost::Histogram library
Hist (Schreiner et al. a) Hist is a analyst friendly front-end for boost-histogram
Decay (Rodrigues & Schreiner a) Describe and convert particle decays
Particle (Rodrigues & Schreiner b) PDG particle data and identification codes
iminuit (Dembinski & et al. 2020) Jupyter-friendly Python interface for the Minuit2
Cabinetry (cra 2021) Design and steer profile likelihood fits
pyhf (Heinrich et al.) pure-Python implementation of HistFactory models

Table 1.1: A few Scikit-HEP projects and their functionality.

Scikit-HEP also encompasses projects like ROOT’s distribution on conda-forge, cibuildwheel,
a utility for building all PyPI-supported binary wheels, and Pybind11, a C++11 API for CPython
and PyPy. This thesis aims to upgrade the Scikit-HEP ecosystem for both, niche HEP and general
programming use cases. Most of the work in this thesis was carried out on Scikit-HEP, preparing it
for the challenges posed by the future of HEP experiments at CERN and other research institutes.

Part II

Computational Upgrades

7

Chapter 2

Automatic differentiation for the Scikit-HEP
ecosystem

2.1 Automatic differentiation and JAX
Automatic differentiation, or AD, is a methodology used to evaluate derivatives using computer
systems. AD uses the chain rule as the fundamental algorithm behind its work and is broadly
categorized into two types: forward mode and reverse mode. In AD, the chain rule is repeatedly
applied to the operations until the final derivative value is obtained. The usage of chain rule
distinguishes AD from symbolic and numerical differentiation, making it a better choice for
scientists. Numerical differentiation produces round-off and discretization errors, given that the
obtained derivative value is generated using approximation algorithms, but AD outputs the exact
derivative value. Unlike numerical differentiation, though symbolic differentiation can give exact
gradients along with the gradient expressions, it is prone to phenomena like expression swell and
does not scale well.

2.1.1 Chain rule
The chain rule allows computing the derivative of composite differentiable functions in terms of the
functions itself. Following the Langrage notation, the derivative of a function h(x), expressed as the
composition of functions f and g (h = f ◦g), can be calculated as -

h′ = (f ′ ◦g).g′

One can also express the rule using Leibnitz notation, where a depends on z, z depends on y,
and y depends on x -

da
dx

=
da
dz

.
dz
dy

.
dy
dx

2.1.2 Forward mode
The forward mode AD computes the chained derivatives bottom-up, that is, evaluating the last
expression in the chain rule first and the first expression at last. More formally, the forward mode

8

9

AD computes the following recursive relation -

∂wi

∂x
=

∂wi

∂wi−1

∂wi−1

∂x

with the initial case, wi = y.

Forward mode AD performs one pass for each variable, calculating the function value and
the derivative in the same pass. Therefore, this type of AD is preferred for functions with a lower
number of independent variables, allowing a lower number of passes. For a function defined as
f : Rn → Rm, the forward mode will compute the final result in n passes; hence, it is considered
efficient if n << m.

2.1.3 Reverse mode
The reverse mode AD computes the chained derivatives top-down, that is, evaluating the first
expression in the chain rule first and the last expression at last. More formally, the reverse mode
AD computes the following recursive relation -

∂y
∂wi

=
∂y

∂wi+1

∂wi+1

∂w

with the initial case, w0 = x.

Reverse mode AD performs one pass to evaluate the function and another pass to calculate
the partial derivatives for every independent variable. For a function defined as f : Rn → Rm, the
forward mode will compute the final result in m passes; hence, it is considered efficient if n >> m.

2.1.4 Differentiable programming with JAX
Differentiable programming is a programming paradigm where the written program is differentiable
using techniques like AD. Differentiable programming languages generally generate a compiled
or a dynamic computational graph for the written code, which is used to differentiate the program
using AD. Compiled graphs can use compiler optimizations to speed up and scale computations but
are usually complex to reason or debug. On the other hand, dynamic graphs can miss important
compiler optimizations and might not scale well with data, but this operation is much more readable
and accessible to debug. Software like Tensorflow (Abadi et al. 2015) and Clad (Vassilev et al.
2015) generate a compiled graph for AD, whereas libraries like PyTorch (Ansel et al. 2024) (Paszke
et al. 2019) and NumPy (Harris et al. 2020) rely on dynamic graphs for AD. Interestingly, Julia’s
(Bezanson et al. 2017) Zygote.jl (Innes 2018) extracts the best of both worlds and generates a
graph on Julia’s intermediate representation, leveraging the just-in-time compiler for compiler
optimizations.

JAX (Bradbury et al. 2018) is a Python library for high-performance computing, program
transformations, and differentiable programming. The language follows the functional and differen-
tiable programming paradigm, allowing users to write safe and differentiable code. Like Julia, JAX
can be compiled just-in-time, allowing its dynamic computation graph to be statically compiled.

10

The static compilation enables compiler optimizations to work on the graph while differentiating
it. JAX also provides a way to extend its AD capabilities to user-defined data structures using the
register_pytree_node function. register_pytree_node only requires the users to specify a
way to flatten and unflatten the custom data structure, handling everything else on its own.

JAX is compatible with NumPy, the fundamental numerical computing library for the IRIS-
HEP and Scikit-HEP ecosystem, making it a perfect choice for implementing AD. Furthermore, the
existing efforts to introduce AD in the IRIS-HEP ecosystem, including the work done by gradhep
(gradHEP), rely on JAX. The existence of JAX in the IRIS-HEP ecosystem makes it an even better
choice for other libraries in the same ecosystem.

2.2 Need for automatic differentiation in HEP analysis pipelines
HEP data analysis pipelines require tuning several free parameters to either precisely measure the
known measurements of the standard model or to detect new particles. For instance, (Simpson 2023a)
shows how machine learning algorithms are utilized to extract relevant data or discriminate the
required signal from background noise in HEP pipelines. Specialized machine learning algorithms
such as gradient descent work well on specific tasks, but such algorithms are often optimized only
for a single physics task. The specialization of these algorithms does not account for systematic
uncertainties and removes several steps from the ultimate physical goal of searching for a new
particle or testing a new physical theory (Guest et al. 2018).

(Simpson 2023a) further shows how having a differentiable program on the statistical side of
HEP pipelines can help overcome the limitations of traditional loss functions. The work mentions
how p-value can be a good objective function for some analysis tasks, requiring the function and the
subset of the program to be differentiable. The existing program will have to be differentiated in its
entirety to reach the p-value function, which is not possible or highly inefficient in most cases. This
paves the way for making standalone modular chunks in the HEP pipelines differentiable. Therefore,
allowing the fundamental libraries such as Awkward Arrays and Vector, which are required for
manipulating and performing initial physics with HEP data, becomes imperative.

2.3 Automatic differentiation and Awkward Arrays
Awkward Arrays are designed to handle the non-uniform nature of HEP data by providing jagged
array structures. The library offers NumPy-like idioms for jagged data, enhancing the speed,
scalability, and efficiency of HEP analysis in Python. Rather than representing data as jagged arrays
in memory, Awkward Arrays store data linearly while specifying a nested data structure with offsets
as metadata. This approach allows users and the memory management system to switch between
jagged and linear array representations. Figure 2.1 illustrates the memory representation of an
Awkward Array.

Given that JAX requires users to specify methods for flattening and unflattening data structures
for differentiation, an Awkward Array is initially flattened into NumpyArrays before being passed to
the necessary JAX function. Once flattened, Awkward slices, ufuncs, and behavior are managed to

11

Figure 2.1: Representing an Awkward array in the memory (Pivarski).

ensure interoperability between the Awkward Array and JAX’s DeviceArray. Although this data
structure becomes differentiable via JAX, it is not yet in a user-ready format. After obtaining results
from JAX, the flattened array is reassembled into an Awkward Array using the stored metadata. The
unflattened array is then returned to the user, thereby abstracting the underlying JAX and Awkward
interoperability. Figure 2.2 graphically illustrates the compatibility of an Awkward Array with JAX
and its automatic differentiation system.

Figure 2.2: Interoperability between Awkward’s Array and JAX’s DeviceArray.

Example 2.1 shows how Awkward’s JAX backend can be used to compute the jacobian-vector
product and gradient of jagged data. The example highlights how the backend can handle NumPy
and Awkward ufuncs, complex slicing, as well as jagged data without any issues.

import j a x
import awkward as ak
import numpy as np

ak . j a x . r e g i s t e r a n d c h e c k ()

def f (x) :
re turn np . power (x [[2 , 2 , 0] , : : − 1] , 3)

12

p r i m a l s = ak . Array ([[1 . , 2 . , 3 .] , [] , [5 . , 6 .]] , backend =” j a x ”)
t a n g e n t s = ak . Array ([[0 . , 1 . , 0 .] , [] , [0 . , 0 .]] , backend =” j a x ”)

va l , g r ad = j a x . j v p (f , (p r i m a l s ,) , (t a n g e n t s ,))
<Array [[2 1 6 . 0 , 1 2 5 . 0] , [. . .] , [2 7 . 0 , 8 . 0 , 1 . 0]]
t y p e =’3 * var * f l o a t 3 2 ’>
<Array [[0 . 0 , 0 . 0] , [0 . 0 , . . .] , [0 . 0 , 1 2 . 0 , 0 . 0]]
t y p e =’3 * var * f l o a t 3 2 ’>

p r i n t (j a x . g r ad (np . sum) () (p r i m a l s) ())
[[1 . 0 , 1 . 0 , 1 . 0] , [] , [1 . 0 , 1 . 0]]

Listing 2.1: Awkward’s JAX backend in code.

The support for AD through JAX existed in Awkward Arrays, but it was buggy and untested
by physicists. This work aimed at polishing the existing JAX backend of Awkward Arrays and
extending it to the other IRIS-HEP libraries. This work extended the Awkward’s JAX backend to -

• work on any arbitrary combination of binary operations
• not clash with Numba functions
• allow differentiating through chained ufuncs,
• allow differentiating through ak.count and ak.mean

Therefore, as described in 2.2, Awkward users can now perform a much more comprehensive
set of differentiable operations on the data using Awkward’s JAX backend.

import j a x
import awkward as ak

ak . j a x . r e g i s t e r a n d c h e c k ()

def f (x) :
re turn ak . mean (ak . sum (x) * x)

a = ak . Array ([[1 . , 2 . , 3 .] , [] , [5 . , 6 .]] , backend =” j a x ”)

f (a) , j a x . g r ad (f) (a)
Array (5 7 . 8 , d t y p e= f l o a t 3 2) ,
<Array [[6 . 8 , 6 . 8 , 6 . 8] , [] , [6 . 8 , 6 . 8]]
t y p e =’2 * var * f l o a t 3 2 ’>

Listing 2.2: Differentiating through a chain of ufuncs, Awkward’s mean function, and binary
operations using Awkward’s JAX backend.

13

Furthermore, 2.3 shows how the JAX backend works well with Numba (Lam et al. 2015)
functions and decorators, causing no clashes between Awkward, JAX, and Numba.

import j a x
import awkward as ak
import numba

ak . j a x . r e g i s t e r a n d c h e c k ()
b e h a v i o r = {}

i n p u t a r r = ak . Array ([1 . 0] , backend =” j a x ”)

@numba . v e c t o r i z e (
[

numba . f l o a t 3 2 (numba . f l o a t 3 2 , numba . f l o a t 3 2) ,
numba . f l o a t 6 4 (numba . f l o a t 6 4 , numba . f l o a t 6 4) ,

]
)
def s o m e k e r n e l (x , y) :

re turn x * x + y * y

@ak . m i x i n c l a s s (b e h a v i o r)
c l a s s SomeClass :

@proper ty
def s o m e k e r n e l (s e l f) :

re turn s o m e k e r n e l (s e l f . x , s e l f . y)

ak . b e h a v i o r . u p d a t e (b e h a v i o r)

a r r = ak . z i p (
{” x ” : i n p u t a r r , ” y ” : i n p u t a r r }
with name =” SomeClass ”

)

a r r . s o m e k e r n e l
[2 . 0]
−−−−−−−−−−−−−−−−−−−
1 * f l o a t 3 2

Listing 2.3: Awkward’s JAX backend does not clash with Numba decorators and functions.

All fixes and features to Awkward’s JAX backend have been released and thoroughly tested
within the repository’s continuous integration pipeline, significantly enhancing its completeness and
reliability for practical HEP analysis pipelines. To assess the readiness of Awkward’s JAX backend,
ongoing efforts aim to integrate automatic differentiation (AD) through Awkward in the Analysis

14

Grand Challenge (AGC) (Held et al. 2022), resulting in a prototype that showcases the backend’s
capabilities.

2.4 Automatic differentiation and the Analysis Grand Challenge
The AGC is designed to perform fundamental HEP analysis by constructing comprehensive data
pipelines that demonstrate the capabilities of the IRIS-HEP ecosystem. This challenge facilitates the
integration of various components of the ecosystem into a single code pipeline, encompassing data
extraction, processing, modeling, and the final presentation of results. The inclusion of AD within
the AGC pipeline, enabled by the work undertaken in this thesis, marks a significant advancement
in the project’s ability to successfully adopt AD through Awkward’s JAX backend.

Neos (Simpson & Heinrich 2021) and Relaxed (Simpson 2023b) provide AD capabilities for
AGC’s modeling, inference, and plotting stages. However, the initial stages of data extraction and
manipulation, involving Awkward Arrays, Vector (fundamental Scikit-HEP libraries), and Coffea (a
columnar collider analysis framework), previously lacked AD support. This thesis has extended AD
implementation in Awkward to Coffea and Vector, thereby enabling the integration of AD across
the entire AGC pipeline. Examples illustrating the use of Awkward’s JAX backend with Coffea and
Vector are shown in 2.4 and 2.5, respectively.

import awkward as ak
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , NanoAODSchema

ak . j a x . r e g i s t e r a n d c h e c k ()
NanoAODSchema . w a r n m i s s i n g c r o s s r e f s = F a l s e

t t b a r f i l e = ” h t t p s : / / g i t h u b . com / s c i k i t −hep / ”\
” s c i k i t −hep − t e s t d a t a / raw / main / s r c / s k h e p t e s t d a t a / d a t a / ”\
” nanoAOD 2015 CMS Open Data t tbar . r o o t ”

e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (
{ t t b a r f i l e : ” E ven t s ” } ,
s c h e m a c l a s s =NanoAODSchema

) . e v e n t s ()
e v e n t s = ak . t o b a c k e n d (e v e n t s . compute () , ” j a x ”)

e v t f i l t e r = ak . t o b a c k e n d (ak . num (e v e n t s . J e t . p t) >= 2 , ” j a x ”)
j e t s = e v e n t s . J e t [e v t f i l t e r]

(j e t s [: , 0] + j e t s [: , 1]) . mass
<Array [1 5 7 . 2 1 9 5 6 , 8 1 . 9 2 0 8 8 , . . . , 32 .363174 , 223 .94753]
t y p e = ’140 * f l o a t 3 2 ’>

Listing 2.4: Coffea using Awkward’s JAX backend to support AD.

15

import awkward as ak
import v e c t o r
import numpy as np
import u p r o o t

v e c t o r . r e g i s t e r a w k w a r d ()
ak . j a x . r e g i s t e r a n d c h e c k ()

t t b a r f i l e = ” h t t p s : / / g i t h u b . com / s c i k i t −hep / ”\
” s c i k i t −hep − t e s t d a t a / raw / main / s r c / s k h e p t e s t d a t a / d a t a / ”\
” nanoAOD 2015 CMS Open Data t tbar . r o o t ”

wi th u p r o o t . open (t t b a r f i l e) a s f :
a r r = f [” Ev en t s ”] . a r r a y s (

[
” E l e c t r o n p t ” ,
” E l e c t r o n e t a ” ,
” E l e c t r o n p h i ” ,
” E l e c t r o n m a s s ” ,
” E l e c t r o n c h a r g e ”

]
)

px = a r r . E l e c t r o n p t * np . cos (a r r . E l e c t r o n p h i)
py = a r r . E l e c t r o n p t * np . s i n (a r r . E l e c t r o n p h i)
pz = a r r . E l e c t r o n p t * np . s i n h (a r r . E l e c t r o n e t a)
E = np . s q r t (a r r . E l e c t r o n m a s s **2 + px **2 + py **2 + pz **2)

e v t f i l t e r = ak . num (a r r [” E l e c t r o n p t ”]) >= 2

e l s = ak . z i p (
{

” p t ” : a r r . E l e c t r o n p t ,
” e t a ” : a r r . E l e c t r o n e t a ,
” p h i ” : a r r . E l e c t r o n p h i ,
” en e r gy ” : E ,
” c h a r g e ” : a r r . E l e c t r o n c h a r g e

} ,
wi th name =”Momentum4D”

) [e v t f i l t e r]
e l s = ak . t o b a c k e n d (e l s , ” j a x ”)

(e l s [: , 0] + e l s [: , 1]) . mass
<Array [8 6 . 9 0 3 5 3 4 , 9 7 . 6 0 4 1 2 , . . . , 62 .408997 , 5 0 . 4 9 0 5 8]

16

t y p e =’5 * f l o a t 3 2 ’>
Listing 2.5: Vector using Awkward’s JAX backend to support AD.

Consequently, this work has expedited the incorporation of AD into physicists’ analysis
pipelines, with a prototype implementation currently being developed at agc-autodiff (Held b).

Chapter 3

Unified Histogram Interface for variable axis
rebinning

Almost every analysis in HEP ends with a histogram, and the irregularities or spikes in these
plots help physicists identify particles or reconfirm measurements. Therefore, having fast, flexible,
easy-to-use, and easy-to-plot solutions for physicists in any data analysis pipeline becomes essential.
The Scikit-HEP ecosystem includes a modular mini-ecosystem of histogram libraries that are
interoperable with each other, as well as with ROOT and PyROOT (Dawe et al. 2015).

3.1 The histogramming mini-ecosystem
The Scikit-HEP ecosystem consists of scalable and efficient histogramming libraries either written
entirely in Python or providing Python bindings without compromising speed. This mini-ecosystem
follows the ideology of Histogram-as-an-Object to create powerful histogramming functionalities,
such as projects, advanced indexing, slicing, serialization, plotting, and much more. The ecosystem
consists of boost-histogram, a Python package that provides Python bindings for Boost.Histogram,
Hist, analyst-friendly front-end for boost-histogram, Histoprint (Koch et al. 2022), nicely displays
histograms in the terminal, UHI, a protocol providing static tools and documentation for the expected
behavior and interaction between histogram libraries, and dask-histogram, Dask support for boost-
histogram. Other libraries that have been deprecated include aghast (Scikit-Hep) and histbook
(Pivarski et al. 2018a).

Boost-histogram is one of the fastest histogramming libraries present in the HEP ecosystem
and forms the basis for all other Scikit-HEP histogramming libraries. The library treats histograms
as objects, and they are written internally in C++ to maintain speed. Moreover, the library is
interoperable with ROOT histograms, PyROOT histograms, as well as histograms written by Uproot.
Boost-histogram supports most of the UHI protocol, making it compatible with any library that
supports the same. The entire histogramming mini-ecosystem is described in 3.2.

17

18

Figure 3.1: Scikit-HEP’s mini-ecosystem for Histograms-as-an-Object.

3.2 Unified Histogram Interface
UHI or Unified Histogram Interface specifies protocols for the current and future histogram libraries
of Scikit-HEP. These protocols allow the libraries and their histograms to interact with each other
and have a consistent API signature. UHI was primarily developed at Scikit-HEP under IRIS-HEP
but is now being adopted by other software frameworks, such as Coffea and ROOT.

The interface provides three major protocols for all the histogram libraries -

• UHI Indexing: powerful indexing system for histograms, designed to extend standard Array
indexing for Histogram operations.

• UHI Indexing+: set of extensions to the standard indexing that make it easier to use on the
command line.

• PlottableProtocol: minimal and complete set of requirements for a source library to produce
and a plotting library to consume to plot a histogram, including error bars.

3.3 The problem of non-uniform axis rebinning
Physicists often require rebinning or transforming the axes of a histogram in their analysis pipelines.
Rebinning includes changing an axis of a histogram and redistributing its content accordingly. This
transformation can either change the number of intervals, keeping them equidistant from each other
(going from a Regular axis to a Regular axis) or change the distance between two intervals (going
from a Regular axis to a Variable axis).

Boost-histogram supported rebinning a Regular axis to a Regular axis (uniform rebinning)
but lacked the support for rebinning a Regular axis to a Variable axis (non-uniform rebinning).

19

For instance, consider the following Regular axis with ten bins placed at equal distances within the
interval [0,10] -

Figure 3.2: Regular axis with 10 bins.

A histogram with the axis described above can be constructed in boost-histogram using 3.1.

import b o o s t h i s t o g r a m as bh

h = bh . His togram (bh . a x i s . R e g u l a r (1 0 , 0 , 1))
Listing 3.1: Constructing a 1D histogram with Regular axis using boost-histogram.

The axis described in 3.1 can be rebinned by a factor of 0.5 to increase the number of bins
while keeping them at an equal distance within the same interval. Figure 3.3 shows how the final
result will look like.

Figure 3.3: Regular axis with 20 bins.

Following UHI indexing, the rebinning described above can be carried out in boost-histogram
using 3.2.

h [: : r e b i n (0 . 5)]
Listing 3.2: Rebinning the histogram with a factor of 0.5.

Now consider the variable axis in 3.4 with three bins spread unequally within the same interval,
[1,10].

Figure 3.4: Variable axis with 3 bins.

Boost-histogram limited the rebinning process to Regular-Regular rebinning; hence, the
histogram’s Regular axis could not be rebinned to the described Variable axis. Multiple physicists

20

have requested this particular case of rebinning through different mediums, including (Chen),
(Schreiner a), (Feikert), and (Held a). The protocol for variable axis or non-uniform rebinning
is specified in the UHI, but its implementation needed to be added to boost-histogram. Adding
complete UHI support will enable boost-histogram to support non-uniform rebinning, allowing
physicists to use the efficient and UHI-compatible solution instead of writing their implementations

3.4 Implementing UHI for rebinning in boost-histogram
The implementation introduces a new Rebinner class, as highlighted in UHI, that is capable of
accepting a factor and a list of groups, along with it being scalable or extendable for the future.
An object of the Rebinner class can be passed in UHI-compatible indexing operations, making the
API similar to the existing rebin function. The Rebinner class is also exported out of the library
with an alias rebin to ensure backward compatibility. Listing 3.3 shows the implementation of
the UHI-compatible Rebinner class. The new groups argument specifies how the existing bins
should be grouped with each other. For instance, rebinning a histogram with axis Regular(10, 0,
1) using Rebinner(groups=[3, 2, 5]) will result in a new histogram with axis Variable([0,
0.3, 0.5, 1]).

c l a s s R e b i n n e r :
s l o t s = (

” f a c t o r ” ,
” g ro up s ” ,

)

def i n i t (
s e l f ,
f a c t o r : i n t | None = None ,
* ,
g r ou ps : Sequence [i n t] | None = None ,

) −> None :
i f not sum (i i s None f o r i in [f a c t o r , g r ou ps]) == 1 :

r a i s e V a l u e E r r o r ()
s e l f . f a c t o r = f a c t o r
s e l f . g ro ups = g ro ups

def r e p r (s e l f) −> s t r :
r e p r s t r = f ”{ s e l f . c l a s s . n a m e }”
a r g s : d i c t [s t r , i n t | Sequence [i n t] | None] = {

” f a c t o r ” : s e l f . f a c t o r ,
” g ro up s ” : s e l f . g roups ,

}
f o r k , v in a r g s . i t e m s () :

i f v i s not None :
r e t u r n s t r = f ”{ r e p r s t r } ({ k}={v }) ”

21

break
return r e t u r n s t r

def c a l l (s e l f , a x i s : P l o t t a b l e A x i s) −> i n t | Sequence [i n t] :
i f s e l f . f a c t o r i s not None :

re turn [s e l f . f a c t o r] * (l e n (a x i s) / / s e l f . f a c t o r)

i f s e l f . g ro ups i s not None :
re turn s e l f . g ro ups

r a i s e N ot I mp l em e n t ed E r r o r (a x i s)
Listing 3.3: A new Rebinner class following the UHI protocol.

Figure 3.5 outlines the code flow within boost-histogram after implementing variable axis
rebinning. It can be observed that the algorithm for non-uniform rebinning is executed in pure
Python instead of C++. At the moment, slicing and regular rebinning are written in C++ with
bindings present in Python, but the new non-uniform rebinning has been written in Python while
maintaining interoperability within the C++ and Python code blocks inside boost-histogram.

Figure 3.5: Implementation of UHI for non-uniform rebinning in boost-histogram.

Listing 3.4 describes the interface for rebinning a Regular axis to a Regular or a Variable
axis after completing the UHI implementation in boost-histogram.

import b o o s t h i s t o g r a m as bh

h = bh . His togram (bh . a x i s . R e g u l a r (1 0 , 0 , 1))

r e b i n = bh . t a g . R e b i n n e r (f a c t o r = 0 . 5)
h [: : r e b i n]

r e b i n = bh . t a g . R e b i n n e r (g r ou ps = [1 , 2 , 3])
h [: : r e b i n]
His togram (
V a r i a b l e ([0 , 0 . 1 , 0 . 3 , 0 . 6] , me tada ta = . . .) ,

22

s t o r a g e=Double ()
) # Sum : 0 . 0

Listing 3.4: Rebinning the histogram with a factor of 0.5 and in groups of 1, 2, 3.

Similarly, 3.5 shows how one can rebin a particular axis of an ND (in this case N = 2) histogram
with the newly implemented UHI-compliant Rebinner class.

import b o o s t h i s t o g r a m as bh

h = bh . His togram (
bh . a x i s . R e g u l a r (2 0 , 1 , 3) , bh . a x i s . R e g u l a r (3 0 , 1 , 3) ,
bh . a x i s . R e g u l a r (4 0 , 1 , 3)

)

s = bh . t a g . S l i c e r ()

s [: : bh . r e b i n (g r ou ps = [1 , 2 , 3])] }] . axe s . s i z e
(3 , 30 , 40)

h [
{

0 : s [: : bh . r e b i n (g r ou ps =[1 , 2 , 3])] ,
2 : s [: : bh . r e b i n (g r ou ps =[1 , 2 , 3])]

}
] . axe s [2] . edges
a r r a y ([1 . , 1 . 0 5 , 1 . 1 5 , 1 . 3])

Listing 3.5: Rebinning a 2D histogram with the new API.

Boost-histogram is now equipped with the ability to perform non-uniform rebinning following
the standard UHI protocols. The work includes several tests that ensures the stability of the feature,
but it is still under review. The feature is scheduled to be released with the upcoming boost-histogram
release, making it available to the physicists before the end of this year.

Chapter 4

Computational upgrades to Vector

Performing vector algebra and physics on the collected HEP data is integral to HEP analysis
pipelines. Given that HEP data is not uniform, the vector algebra frameworks or libraries should
work readily on non-uniform or jagged data, allowing users to perform operations on an entire
jagged array in minimum passes. The vector algebra systems allow physicists to go for raw data
to some meaningful results, which can then be visualized using the histogramming libraries. The
Scikit-HEP ecosystem maintains its own library for performing vector algebra. This library is
compatible with the rest of the HEP ecosystem and is designed to be a general-purpose package
instead of a HEP-specific one.

4.1 A quick introduction to vector
Vector is Python library for creating and manipulating 2D, 3D, and Lorentz vectors, especially
arrays of vectors, to solve common physics problems in a NumPy-like way. Vector allows physicists
to perform physics on the data extracted by HEP experiments using backend libraries like Awkward
Arrays. Vectors may be represented in a variety of coordinate systems: Cartesian, cylindrical,
pseudorapidity, and any combination of these with time or proper time for Lorentz vectors. In all,
there are 12 coordinate systems: x− y vs ρ −ϕ in the azimuthal plane × z vs θ vs η longitudinally
× t vs τ temporally. Further, the names and conventions in Vector are uniform with ROOT’s
TLorentzVector and Math::LorentzVector, as well as Scikit-HEP/math, uproot-methods, hen-
ryiii/hepvector (Schreiner b), and coffea.nanoevents.methods.vector.

Vector implements a variety of backends for several purposes. Although Vector was written
with HEP in mind, it is a general-purpose library that can be used for any scientific or engineering
application. Before my work on Vector, it housed 3+2 backends, a pure Python object backend,
a NumPy backend, an Awkward backend, and implementations of the Object and the Awkward
backend in Numba for just-in-time compilable operations. Finally, Vector also provides a distinction
between geometrical vectors, which have a minimum of attribute and method names, and vectors
representing momentum, which have synonyms like pt = rho, energy = t, and mass = tau.

For instance, 4.1 shows how vectors of different backends can be constructed using the library.

23

24

import v e c t o r ; import sympy ; import awkward as ak

c r e a t i n g O b j e c t t y p e v e c t o r s
v e c t o r . MomentumObject3D (px = 1 . 1 , py = 2 . 2 , pz = 3 . 3)
v e c t o r . Vec to rObjec t4D (x = 1 . 1 , y = 2 . 2 , e t a = 3 . 3 , t a u = 4 . 4)

c r e a t i n g SymPy t y p e v e c t o r s
x , y , px , py , pz , e t a , t a u = sympy . symbols (

’ x y px py pz e t a t a u ’ ,
r e a l =True ,

)
v e c t o r . MomentumSympy3D (px=px , py=py , pz=pz)
v e c t o r . VectorSympy4D (x=x , y=y , e t a = e t a , t a u = t a u)

c r e a t i n g NumPy t y p e v e c t o r s
NumPy− l i k e argument s (l i t e r a l l y pas se d t h r o u g h t o NumPy)
v e c t o r . VectorNumpy2D (

[(1 . 1 , 2 . 1) , (1 . 2 , 2 . 2) , (1 . 3 , 2 . 3) , (1 . 4 , 2 . 4) , (1 . 5 , 2 . 5)] ,
d t y p e = [(” x ” , f l o a t) , (” y ” , f l o a t)] ,

)

Pandas− l i k e arguments (d i c t from names t o column a r r a y s)
v e c t o r . VectorNumpy2D (

{
” x ” : [1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5] ,
” y ” : [2 . 1 , 2 . 2 , 2 . 3 , 2 . 4 , 2 . 5]

}
)

c r e a t i n g Awkward t y p e v e c t o r s
v e c t o r . awk (

[
[

{” x ” : 1 , ” y ” : 1 . 1 , ” z ” : 0 . 1} ,
{” x ” : 2 , ” y ” : 2 . 2 , ” z ” : 0 . 2}

] ,
[{ ” x ” : 3 , ” y ” : 3 . 3 , ” z ” : 0 . 3 }] ,

]
)

v e c t o r . r e g i s t e r a w k w a r d ()

ak . Array (
[

[

25

{” x ” : 1 , ” y ” : 1 . 1 , ” z ” : 0 . 1} ,
{” x ” : 2 , ” y ” : 2 . 2 , ” z ” : 0 . 2}

] ,
[{ ” x ” : 3 , ” y ” : 3 . 3 , ” z ” : 0 . 3 }] ,

] ,
wi th name =” Vector3D ” ,

)
Listing 4.1: Vector constructors.

Similarly, 4.2 shows how one can manipulate or perform operations on the created vectors
using the methods and functions provided by the library.

B r o a d c a s t s a r o t a t i o n a n g l e o f 0 . 1 t o bo th e l e m e n t s o f t h e
f i r s t l i s t , 0 . 2 t o t h e empty l i s t , and 0 . 3 t o t h e o n l y
e l e m e n t o f t h e l a s t l i s t .
v e c t o r . awk (

[
[

{” rho ” : 1 , ” p h i ” : 0 . 1} , {” rho ” : 2 , ” p h i ” : 0 . 2 }] ,
[] ,
[{ ” rho ” : 3 , ” p h i ” : 0 . 3}

]
]

) . r o t a t e Z ([0 . 1 , 0 . 2 , 0 . 3])

b i n a r y o p e r a t o r e q u i v a l e n t s
v e c t o r . o b j (x =3 , y = 4) . s c a l e (1 0)
v e c t o r . o b j (x =1 , y =2) @ v e c t o r . o b j (x =5 , y =5)

d e l t a p h i i s a p l a n a r o p e r a t i o n (d e f i n e d on t h e t r a n s v e r s e
p l a n e)
v e c t o r . o b j (rho =1 , p h i = 0 . 5) . d e l t a p h i (

v e c t o r . o b j (rho =2 , p h i = 0 . 3)
)

v e c t o r . o b j (p t =1 , p h i = 1 . 3 , e t a = 2) . d e l t a R (
v e c t o r . o b j (p t =2 , p h i = 0 . 3 , e t a =1)

)
Listing 4.2: Vector methods.

26

4.2 The recent surge in Vector’s usage
Vector saw a sudden surge in its user base during my time working at CERN. This surge was
attributed to various factors joining together near the start of LHC’s run 3. The new upgrades
to transform LHC into HL-LHC have sparked several efforts to improve the existing software
infrastructure to handle a sudden and massive increase in HEP data. One such attempt, the 200
GBPS challenge (Bockelman et al.), outlines the requirements of the planned HL-LHC upgrades.
The challenge aims to operate at 25% of the HL-LHC scale, allowing physicists to read 200TB
of data in 30 minutes. This challenge and other LHC upgrades pushed several teams to Vector
requesting various performance optimizations, bug fixes, and feature requests.

Besides the standalone Vector issues, the library also required a sync with the other HEP
libraries in the ecosystem. For instance, given that physicists primarily rely on Vector’s awkward
backend, the new JAX and Dask (Dask Development Team 2016) backends of Awkward also
required propagation in Vector. The new Awkward backends were already used by physicists in
their analysis pipelines; hence, supporting them in Vector became a pressing issue. Furthermore,
Coffea developers decided to move away from their internal vector modules to Scikit-HEP/vector.
This internal switch of the vector algebra backend started a discussion about the mismatch in vector
algebra frameworks in the HEP ecosystem and the process of making everything uniform.

4.3 Preparing Vector for future LHC/HL-LHC runs
Vector saw 5 new releases within a short span of six months, making it one of the most active years
for the library. The releases included minor bug fixes, feature additions, and maintenance jobs, as
well as, major design changes, new backend support, and a better cohesion with the rest of the HEP
ecosystem.

The v1.2 release focused on specifying a uniform promotion and demotion scheme for the
geometric coordinates of a vector of any backend. This discussion was prompted by the start of the
migration of Coffea’s vector modules to Scikit-HEP/vector. Along with a new scheme, sub-classing
awkward mixins from Vector was made easier, bug-free, and more documented. Both these changes
were requested directly by physicists working at CERN experiments, enabling Vector to adapt better
to its intended use case. More specifically, the following non-maintenance and non-documentation
changes were released in Vector in v1.2 -

• fix: result of an infix operation should be demoted to the lowest possible dimension
• fix: all infix operations should not depend on the order of arguments
• fix: return the correct awkward record when performing an infix operation
• fix: respect user defined awkward mixin subclasses and projection classes

4.3 shows the v1.2 updates and fixes in action.

27

import awkward as ak
import v e c t o r
from c o f f e a . n a n o e v e n t s . methods import v e c t o r

a = v e c t o r . z i p (
{

” x ” : [1 0 . 0 , 2 0 . 0 , 3 0 . 0] ,
” y ” : [− 1 0 . 0 , 2 0 . 0 , 3 0 . 0] ,
” z ” : [5 . 0 , 1 0 . 0 , 1 5 . 0] ,
” t ” : [1 6 . 0 , 3 1 . 0 , 4 6 . 0] ,

} ,
)
b = v e c t o r . z i p (

{
” x ” : [− 1 0 . 0 , 2 0 . 0 , − 3 0 . 0] ,
” y ” : [− 1 0 . 0 , −20 .0 , 3 0 . 0] ,
” z ” : [5 . 0 , −10 .0 , 1 5 . 0] ,

} ,
)

{
” x ” : [0 . 0 , 4 0 . 0 , 0 . 0] ,
” y ” : [0 . 0 , 0 . 0 , 6 0 . 0] ,
” z ” : [1 0 . 0 , 0 . 0 , 3 0 . 0] ,
” t ” : [1 6 . 0 , 3 1 . 0 , 4 6 . 0] ,

} ,

b e f o r e f i x
ak . p a r a m e t e r s (a+b) , ak . p a r a m e t e r s (b+a)
{ ’ r e c o r d ’ : ’Momentum4D ’} , { ’ r e c o r d ’ : ’Momentum3D ’}

a f t e r f i x
ak . p a r a m e t e r s (a+b) , ak . p a r a m e t e r s (b+a)
{ ’ r e c o r d ’ : ’Momentum3D ’} , { ’ r e c o r d ’ : ’Momentum3D ’}

b e f o r e f i x
a + b , b + a
{

” x ” : [0 . 0 , 4 0 . 0 , 0 . 0] ,
” y ” : [0 . 0 , 0 . 0 , 6 0 . 0] ,
” z ” : [1 0 . 0 , 0 . 0 , 3 0 . 0] ,
” t ” : [1 6 . 0 , 3 1 . 0 , 4 6 . 0] ,

} , {
” x ” : [0 . 0 , 4 0 . 0 , 0 . 0] ,
” y ” : [0 . 0 , 0 . 0 , 6 0 . 0] ,

28

” z ” : [1 0 . 0 , 0 . 0 , 3 0 . 0] ,
}

a f t e r f i x
a + b , b + a
{

” x ” : [0 . 0 , 4 0 . 0 , 0 . 0] ,
” y ” : [0 . 0 , 0 . 0 , 6 0 . 0] ,
” z ” : [1 0 . 0 , 0 . 0 , 3 0 . 0] ,

} , {
” x ” : [0 . 0 , 4 0 . 0 , 0 . 0] ,
” y ” : [0 . 0 , 0 . 0 , 6 0 . 0] ,
” z ” : [1 0 . 0 , 0 . 0 , 3 0 . 0] ,

}

a = ak . z i p (
{

” x ” : [[1 , 2] , [] , [3] , [4]] ,
” y ” : [[5 , 6] , [] , [7] , [8]] ,
” z ” : [[9 , 1 0] , [] , [1 1] , [1 2]] ,
” t ” : [[5 0 , 5 1] , [] , [5 2] , [5 3]] ,

} ,
wi th name =” L o r e n t z V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r

)

b e f o r e f i x
a . t o V e c t o r 3 D ()
<MomentumArray3D [{ rho : 10 , p h i : 0 . 1 , . . . } , . . . , { . . . }]
t y p e =’3 * Momentum3 . . . ’ >

a f t e r f i x
a . t o V e c t o r 3 D ()
<T h r e e V e c t o r A r r a y [[{ x : 1 , y : 5 , z : 9} , { . . . }] , . . .]
t y p e =’4 * var * ThreeV . . . ’ >

Listing 4.3: Fixes and features introduced in Vector v1.2.

Vector v1.3 saw multiple new features, including Dask (Dask-Contrib) support for parallel
computing, momentum coordinate support in coordinate transformation methods, and a new like
method to help physicists adapt to a new strict promotion and demotion scheme for geometric
coordinates. These updates were made to keep Vector compatible and in sync with the rest of the
HEP ecosystem and to address new issues reported by physicists. Vector v1.3 included the following
upgrades -

• feat: coordinate transformation functions with momentum names

29

• feat: allow momentum coords in to VectorND methods + cleanup
• feat: like method for projecting vector into the coordinate space of another vector + better

type errors and hints
• feat: add support for dask-awkward arrays in Vector constructors
• feat: short names for to VectorND methods

4.4 shows the v1.3 updates and fixes in action.

import v e c t o r
import dask awkward as dak

c o o r d i n a t e s u p p o r t i n momentum t r a n s f o r m a t i o n methods
vec = v e c t o r . MomentumObject2D (p t =0 , p h i =1)
vec . t o p t p h i e t a ()

momentum c o o r d i n a t e s u p p o r t i n t r a n s f o r m a t i o n methods
vec . t o V e c t o r 3 D () . t o V e c t o r 4 D (M=4)

s h o r t a l i a s e s
vec . to 4D ()

Dask s u p p o r t
x = dak . from awkward (

ak . Array (
[{ ” x ” : 1 , ” y ” : 2} , {” x ” : 1 . 1 , ” y ” : 2 . 2 }]

) ,
n p a r t i t i o n s =1

)
vec = v e c t o r . Array (x)

t h e new l i k e method
vec2 = v e c t o r . MomentumObject2D (p t =0 , p h i =1 , e t a =3)
vec + vec2 . l i k e (vec)

Listing 4.4: Fixes and features introduced in Vector v1.3.

v1.3.1 was a small release focusing on fixing issues with momentum vectors and supporting
the latest dask-awkward version for distributed computing. The release included the following
changes -

• feat: make momentum-ness infectious
• fix: support dask-awkward 2024.3.0
• fix: momentum coords should not be repeated with generic coords in subclasses

4.5 shows the v1.3.1 updates and fixes in action.

30

import v e c t o r
import awkward as ak
from c o f f e e . n a n o e v e n t s . methods import v e c t o r

v1 = v e c t o r . z i p (
{

” px ” : [1 0 . 0 , 2 0 . 0 , 3 0 . 0] ,
” py ” : [− 1 0 . 0 , 2 0 . 0 , 3 0 . 0] ,

} ,
)
v2 = v e c t o r . z i p (

{
” x ” : [1 0 . 0 , 2 0 . 0 , 3 0 . 0] ,
” y ” : [− 1 0 . 0 , 2 0 . 0 , 3 0 . 0] ,
” z ” : [5 . 0 , 1 . 0 , 1 . 0] ,

} ,
)

i n f e c t i o u s momentum−n e s s
momentum + g e n e r i c = momentum
2D + 3D. l i k e (2D) = 2D
v1 + v2 . l i k e (v1)

a = ak . z i p (
{

” p t ” : [[1 , 2] , [] , [3] , [4]] ,
” e t a ” : [[1 . 2 , 1 . 4] , [] , [1 . 6] , [3 . 4]] ,
” p h i ” : [[0 . 3 , 0 . 4] , [] , [0 . 5] , [0 . 6]] ,
” en e r gy ” : [[5 0 , 5 1] , [] , [5 2] , [6 0]] ,

} ,
wi th name =” P t E t a P h i E L o r e n t z V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r ,
)

b = ak . z i p (
{

” rho ” : [1 0 . 0 , 2 0 . 0 , 3 0 . 0] ,
” t h e t a ” : [0 . 3 , 0 . 6 , 1 . 1] ,
” p h i ” : [− 3 . 0 , 1 . 1 , 0 . 2] ,

} ,
wi th name =” S p h e r i c a l T h r e e V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r ,

)

b e f o r e f i x
a . f i e l d s , a . l i k e (b) . f i e l d s

31

[’ p t ’ , ’ e t a ’ , ’ p h i ’ , ’ en e r g y ’] ,
[’ rho ’ , ’ p h i ’ , ’ e t a ’ , ’ p t ’ , ’ en e r g y ’]

a f t e r f i x
[’ p t ’ , ’ e t a ’ , ’ p h i ’ , ’ en e r g y ’] , [’ rho ’ , ’ p h i ’ , ’ e t a ’]

Listing 4.5: Fixes and features introduced in Vector v1.3.1.

Vector v1.4 introduced SymPy as a new symbolic computation backend for the library. The
backend is discussed in great detail in Chapter 6. Other than the new backend, the release also
contained minor feature additions and bug fixes. More specifically, the release added the ability to
pass momentum coordinates in coordinate transformation methods and fixed the implementation of
squaring a vector.

• feat: a sympy backend
• feat: allow coord values in to ¡coord names¿ methods
• fix: call the square implementation for power 2 on object vectors
• fix: use negfactor in negfactor scale test

4.6 shows the v1.4 updates and fixes in action.

import v e c t o r

b e f o r e f i x
v e c t o r . a r r a y (

{”E” : [1] , ” px ” : [1] , ” py ” : [1] , ” pz ” : [1]}
) ** 2
[−2.0]
v e c t o r . z i p (

{”E” : [1] , ” px ” : [1] , ” py ” : [1] , ” pz ” : [1] } ,
) ** 2
ak . Array ([−2])
v e c t o r . o b j (E=1 , px =1 , py =1 , pz =1) ** 2
2.0000000000000004

a f t e r f i x
v e c t o r . a r r a y (

{”E” : [1] , ” px ” : [1] , ” py ” : [1] , ” pz ” : [1]}
) ** 2
[−2.0]
v e c t o r . z i p (

{”E” : [1] , ” px ” : [1] , ” py ” : [1] , ” pz ” : [1] } ,
) ** 2
ak . Array ([−2])
v e c t o r . o b j (E=1 , px =1 , py =1 , pz =1) ** 2

32

−2

c o o r d i n a t e s u p p o r t i n momentum t r a n s f o r m a t i o n methods
vec = v e c t o r . MomentumObject2D (p t =0 , p h i =1)
vec . t o p t p h i e t a (e t a =2)

Listing 4.6: Fixes and features introduced in Vector v1.4.

v1.4.1 was another small release that included multiple bug fixes for the SymPy, NumPy, and
the Object backends of vector -

• fix: sympy backend on NumPy 2.0 (full NumPy 2.0 support)
• fix: add lower and upper bounds for deltaangle
• fix: maximum for SymPy backend is the identity function now
• fix: get coordinate classes to work for NumPy

4.7 shows the v1.4.1 updates and fixes in action.

import v e c t o r

v = v e c t o r . o b j (x =1 , y =1 , z =1)

b e f o r e f i x
v . d e l t a a n g l e (v)
nan

a f t e r f i x
v . d e l t a a n g l e (v)
0 . 0

c o o r d i n a t e c l a s s e s f o r NumPy v e c t o r s
vec4d = v e c t o r . VectorNumpy4D (

{
” x ” : [1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5] ,
” y ” : [2 . 1 , 2 . 2 , 2 . 3 , 2 . 4 , 2 . 5] ,
” z ” : [3 . 1 , 3 . 2 , 3 . 3 , 3 . 4 , 3 . 5] ,
” t ” : [4 . 1 , 4 . 2 , 4 . 3 , 4 . 4 , 4 . 5] ,

}
)

vec4d . a z i m u t h a l , vec4d . l o n g i t u d i n a l , vec4d . t e m p o r a l
Listing 4.7: Fixes and features introduced in Vector v1.4.1.

Most of the updates made to Vector were computational, but several infrastructure, docu-
mentation, and maintenance changes were also added to the library. This thesis does not cover

33

non-computational changes but these changes are available in Vector’s changelog. Moreover, all
the upgrades and fixes in Vector were created to meet the expectations of its rapidly growing users.
Vector is now much better prepared for the challenges posed by future upgrades to HEP experiments
at CERN.

Chapter 5

Coffea’s new backend for vector algebra

The existing Scikit-HEP ecosystem provides physicists with standalone libraries that can be used
together in a script to achieve analysis of HEP data. This modularity as a design choice allows users
to explore the libraries at a lower level, giving them complete control over their code. However, this
modularity also makes the syntax alien-like and confusing for beginners. Moreover, the fundamental
libraries of the ecosystem are as general as possible, allowing them to be used by physicists and other
STEM people. This generalization makes it hard to integrate HEP or CERN experiment-specific
schemas, vector classes, or data structures within the libraries. To combat this, Coffea provides
essential tools and wrappers for enabling not-too-alien syntax when running columnar collider HEP
analysis.

5.1 Coffea and its vector modules
Coffea makes use of Scikit-HEP libraries like Uproot and Awkward Arrays but also implements its
own histogramming, plotting, and vector functionalities. For instance, 5.1 outlines a short example
(Peruzzi et al. 2020) displaying how Coffea can be used in a fundamental HEP analysis. The
example uses Uproot and Awkward Arrays underneath to read, write, and manipulate HEP data, but
on the surface, it provides users with wrapper functionalities that can be extended to perform other
niche physics tasks. Furthermore, it is possible to scale a HEP analysis to a large multi-core server,
computing clusters, and super-computers with Coffea. The scaling is enabled via other IRIS-HEP
projects as well as the Dask backends of the array and histogram libraries of Scikit-HEP.

import awkward as ak
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , NanoAODSchema

NanoAODSchema . w a r n m i s s i n g c r o s s r e f s = F a l s e

fname = (
” h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / CoffeaTeam / c o f f e a / ” +
” m a s t e r / t e s t s / s amples / nano dy . r o o t ”

)
e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (

34

35

{ fname : ” Ev en t s ” } ,
s c h e m a c l a s s =NanoAODSchema ,
m e t a d a t a ={” d a t a s e t ” : ” DYJets ” } ,

) . e v e n t s ()

compute t h e en er g y o f GenJet
e v e n t s . GenJe t . e ne r gy . compute ()

f i n d d i s t a n c e be tween l e a d i n g j e t and a l l e l e c t r o n s i n each e v e n t
dr = e v e n t s . J e t [: , 0] . d e l t a r (e v e n t s . E l e c t r o n)
d r . compute ()

f i n d minimum d i s t a n c e
ak . min (dr , a x i s = 1) . compute ()

comput ing t h e p t c o o r d i n a t e o f Muons i n e v e n t s w i t h
1 or more Muons
e v e n t s . Muon [ak . num (e v e n t s . Muon) >0] . m a t c h e d j e t . p t . compute ()

choose e v e n t s w i t h e x a c t l y 2 muons
sum along t h e a x i s and compute t h e mass
mmevents = e v e n t s [ak . num (e v e n t s . Muon) == 2]
zmm = mmevents . Muon [: , 0] + mmevents . Muon [: , 1]
zmm. mass . compute ()

Listing 5.1: A short analysis example using Coffea.

Coffea has deprecated its plotting and histogramming code since Scikit-HEP now consists
of HEP-specific plotting and histogramming libraries. Coffea now depends on these libraries and
extends their functionalities internally for the HEP data analysis use case.

5.2 Coffea’s vector to Scikit-HEP/vector
Coffea’s vector module pre-dates Scikit-HEP/vector, but now that Vector has achieved maturity, it
made sense to migrate Coffea’s internals to Scikit-HEP/vector. Scikit-HEP/vector is now much more
sophisticated and functional than Coffea’s vector sub-package, including support for third-party
libraries, such as JAX, Dask, and SymPy (Meurer et al. 2017). Although Scikit-HEP/vector does
not offer as many HEP functionalities as the current vector modules of Coffea, the basic HEP
functionalities offered by Vector can be extended by inheriting the VectorAwkward mixin classes.

The migration will ensure that the IRIS-HEP ecosystem does not provide users with repetitive
code or code that looks similar but performs differently. Additionally, the functionality and conven-
tional differences between Coffea vector modules and Scikit-HEP/vector should be minimized to
give users a single interface with the best of both worlds. Further, this will also unite physicists,

36

given that some were currently using Scikit-HEP/vector in their data analysis pipeline, and the
remaining were using the internal vector modules of Coffea.

5.3 Implementing Scikit-HEP/vector as a backend for Coffee’s
vector classes

Bringing together both codebases to agree on a single convention started several discussions in both
Scikit-HEP and Coffea. These discussions formalized multiple changes in Vector and Awkward
Arrays such that adopting Vector as a vector algebra backend in Coffea can be as smooth as possible.
The niche HEP-specific functionalities were agreed to be kept in Coffea; hence, Coffea could
depend on Vector and extend its functionality by inheriting the Vector mixins or adding functions
that accept Vector objects as arguments. Ultimately, Coffea was scheduled to deprecate its vector
modules entirely and only depend on Vector to create and manipulate vectors.

The switch from Coffea’s internal vector modules to Scikit-HEP/vector was a drastic and
breaking change that was supposed to be rolled out in parts to let physicists migrate their data
pipelines. Therefore, in the initial phase, Coffea vector classes were made to inherit Scikit-
HEP/vector’s mixin classes, allowing developers to remove Coffea vector methods and depend on
the superclass’s methods. The inheritance approach kept the Coffea’s vector interface intact, giving
more time to the physicists. Figure 5.1 describes how the migration was carried out internally. The
migration also added a new feature in Awkward, the copy_behaviors function. The HEP-specific
vector classes in Coffea required registering Awkward ufuncs for each of them individually. This
process involved repetitive code, given that Coffea consists of multiple vector classes for multiple
use cases. The passing down of behavior and ufuncs to subclasses was also an open issue in
Awkward; hence, a new function was introduced to copy the ufuncs of a superclass to the subclass
entries in the behavior dictionary.

Figure 5.1: Switching Coffea’s vector algebra backend.

Examples 5.2 and 5.3 show how seamlessly one can switch from Coffea’s vector modules to
Scikit-HEP/vector without losing performance or any functionality.

import awkward as ak
from c o f f e a . n a n o e v e n t s . methods import v e c t o r
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , BaseSchema

37

f i l e n a m e = ” f i l e : / / Run2012B DoubleMuParked . r o o t ”
e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (

{ f i l e n a m e : ” Ev en t s ” } ,
s t e p s p e r f i l e =2 000 ,
m e t a d a t a ={” d a t a s e t ” : ” DoubleMuon ” } ,
s c h e m a c l a s s =BaseSchema ,

) . e v e n t s ()

muons = ak . z i p (
{

” p t ” : e v e n t s . Muon pt ,
” e t a ” : e v e n t s . Muon eta ,
” p h i ” : e v e n t s . Muon phi ,
” mass ” : e v e n t s . Muon mass ,

} ,
wi th name =” L o r e n t z V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r ,

)
Listing 5.2: Constructing a 4D momentum vector with Coffea.

import awkward as ak
import v e c t o r
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , BaseSchema

f i l e n a m e = ” f i l e : / / Run2012B DoubleMuParked . r o o t ”
e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (

{ f i l e n a m e : ” Ev en t s ” } ,
s t e p s p e r f i l e =2 000 ,
m e t a d a t a ={” d a t a s e t ” : ” DoubleMuon ” } ,
s c h e m a c l a s s =BaseSchema ,

) . e v e n t s ()

muons = v e c t o r . z i p (
{

” p t ” : e v e n t s . Muon pt ,
” e t a ” : e v e n t s . Muon eta ,
” p h i ” : e v e n t s . Muon phi ,
” mass ” : e v e n t s . Muon mass ,

}
)

Listing 5.3: Creating a 4D momentum vector with Scikit-HEP/vector

The internal migration of Coffea’s vector algebra backend is complete but is still under review.
Coffea’s interface will not change after the internal migration, making the old Coffea code perfectly

38

valid. After the internal switch, the next step will be to remove Coffea’s vector modules and redirect
physicists to use Scikit-HEP/vector in their data analysis pipelines.

Chapter 6

Vector’s symbolic backend for theoretical
computations

6.1 Symbolic programming and SymPy
Symbolic programming is a programming paradigm in which computer systems operate on formulas
and data containers without interacting with numerical data. This type of programming is used within
the theoretical Sciences and Mathematics to write proofs, solve equations, or even differentiate
expressions using pre-defined rules. Multiple programming languages, such as Lisp (Steele 1990)
and Mathematica (Inc.), are explicitly designed for symbolic programming. Other languages often
have third-party libraries or packages for symbolic programming, such as SymPy in Python and
Symbolics.jl (Gowda et al. 2022) in Julia.

Focusing on the Python ecosystem, SymPy is the most widely used computer algebra system
(CAS) by scientists and programmers. SymPy has a full suite of symbolic operations and is
maintained by a vast community. The operations and functionalities include symbolic calculus,
combinatorics, discrete mathematics, geometry, physics, statistics, and even printing mathematical
expressions in LATEX. Since SymPy is written in pure Python, is well maintained, and is widely used
in the Python ecosystem, it was the top choice for implementing a symbolic backend in Vector.

6.2 Need for a symbolic backend
The Scikit-HEP ecosystem is primarily meant to be used by experimental physicists to manipulate
and perform physics on numerical data. Theoretical physicists are largely aloof from Scikit-HEP
and other experimental Physics frameworks. Moreover, only MC generators like Pythia (Sjöstrand
et al. 2015) are routinely used by both experimental and theoretical physicists.

A new SymPy backend in Vector (Pivarski & Chopra 2024a) (Pivarski & Chopra 2024b) will
allow symbolic computations on HEP vectors. Along with experimental physicists using Vector for
numerical computations, the SymPy backend will enable theoretical physicists to utilize the library
for symbolic computations. Since the SymPy vector classes and their momentum equivalents will
operate on SymPy expressions, all of the standard SymPy methods and functions will work on the

39

40

vectors, vector coordinates, and the results of operations carried out on vectors. Moreover, Vector’s
SymPy backend will create a stronger connection between software used by experimentalists and
software used by theorists.

Furthermore, Vector’s compute functions were written to operate only on data containers
and not the numerical values of the data containers. The symbolic behavior of Vector’s compute
functions is tested in the continuous integration pipeline using uncompyle6. Given that uncompyle6
is supported till Python 3.8, which is reaching its end of life soon, finding other methods to test
the specialized behavior of compute functions became important. The tests of the SymPy backend
will allow vector developers to remove the uncompyle6 dependency because running the compute
functions on SymPy vectors will ensure that they are operating only on the data containers.

6.3 Implementing a symbolic backend in Vector
Vector was designed from the ground-up to have multiple computational backends. The duck typing
of compute functions allows them to be shared within the backends without introducing repetitive
code. Implementing the SymPy backend included adding coordinate and vector classes capable of
constructing vectors using SymPy’s data containers and wrapping compute function results as a
SymPy expression.

Figure 6.1 shows how the SymPy backend and other Vector backends interact with the comput-
ing functions. Each backend has its own coordinate and vector classes that can accept numerical
(for the case of Object/NumPy/Awkward backend) or symbolic (for the case of SymPy backend)
arguments. The classes, as well as the method written directly under them, are compatible with the
respective backend libraries. The Object backend uses NumPy to perform all the arithmetic and
Awkward functions work on NumPy vectors without any performance degradation.

Figure 6.1: Implementation of Vector’s SymPy backend.

41

Finally, all the compute functions valid on the dimension of the constructed vector work with
all the backends. At the moment, the compute functions switch between backend libraries using a
shim layer. This shim layer is not required for the Object, NumPy, and Awkward backends because
NumPy works with all of them. On the other hand, due to different naming conventions between
SymPy and NumPy, the NumPy functions are mapped to the respective SymPy functions in the
shim layer and are flown down to the compute functions. The results from these compute functions
are wrapped with values or appropriate data structures in the vector classes. This wrapped result can
then be used in any of the functions provided by the backend libraries, making a strong cohesion
between Vector backends and the backend libraries.

Consider the example 6.1 performing deltaR operation on two Object type 4D Momentum
vectors.

import v e c t o r

muon 1 obj = v e c t o r . MomentumObject4D (px =1 , py =2 , pz =3 , E=10)
muon 2 obj = v e c t o r . MomentumObject4D (px =2 , py =3 , pz =4 , E=11)

muon 1 obj . d e l t a R (muon 2 obj)
0.19249147660266414

Listing 6.1: Performing deltaR on Object vectors.

The exact same operation can be carried out using the SymPy backend with an almost identical
syntax. 6.2 shows how SymPy symbols can be passed into MomentumSymPy constructors as
arguments just like numerical values are passed into MomentumObject constructors. The deltaR
operation on SymPy vector returns a SymPy expression instead of a numerical value. The obtained
SymPy expression is compatible with every SymPy method and function; hence, one can substitute
(subs) and evaluate (evalf) the resultant expression to validate the theoretical expression.

import v e c t o r ; import sympy

px 1 , py 1 , pz 1 , E 1 = sympy . symbols (
” px 1 py 1 pz 1 E 1 ” , r e a l =True

)
px 2 , py 2 , pz 2 , E 2 = sympy . symbols (

” px 2 py 2 pz 2 E 2 ” , r e a l =True
)

muon 1 sympy = v e c t o r . MomentumSympy4D (
px=px 1 , py=py 1 , pz=pz 1 , E=E 1

)
muon 2 sympy = v e c t o r . MomentumSympy4D (

px=px 2 , py=py 2 , pz=pz 2 , E=E 2
)

42

muon 1 sympy . d e l t a R (muon 2 sympy)
s q r t ((Mod (a tan2 (py 1 , px 1) − a tan2 (py 2 , px 2) + pi , 2* p i) −
p i)**2 + (a s i n h (p z 1 / s q r t (px 1 **2 + py 1 * * 2))
− a s i n h (p z 2 / s q r t (px 2 **2 + py 2 * * 2))) * * 2)

t a k e t h e v a l u e s from o b j e c t t y p e v e c t o r s
muon 1 sympy . d e l t a R (muon 2 sympy) . subs (

{
px 1 : muon 1 obj . px ,
py 1 : muon 1 obj . py ,
pz 1 : muon 1 obj . pz ,
E 1 : muon 1 obj . E ,
px 2 : muon 2 obj . px ,
py 2 : muon 2 obj . py ,
pz 2 : muon 2 obj . pz ,
E 2 : muon 2 obj . E ,

}
) . e v a l f ()
0.192491476602664

Listing 6.2: Performing deltaR on SymPy vectors.

The SymPy backend has two significant and intentional caveats. SymPy internally uses mpmath
to perform complex floating-point arithmetic, which has led to minor disagreements between the
results obtained through the Object and the SymPy backend. This disagreement can be minimized
by specifying more decimal points in the precision. Further, operations on SymPy vectors are only
100% compatible with numeric vectors (Python, NumPy, and Awkward backends) if the vectors are
positive time-like, that is, if -

t2 > x2 + y2 + z2

The space-like and negative time-like cases have different sign conventions; hence, to make
SymPy’s simplification work, these sign conventions are ignored in the shim layer. Given that most
of the HEP analysis deals with positive time-like vectors, this caveat does not hinder the ability to
use the Vector’s SymPy backend in theoretical calculations.

Chapter 7

Bringing histograms to GPUs:
cuda-histogram

Awkward Arrays provides NumPy-like functionality for jagged data produced by HEP exper-
iments. The library intertwines naturally with several fundamental scientific computing Python
libraries, allowing physicists to utilize the entire ecosystem to its full potential. The support for
third-party libraries enables physicists to perform various tasks on their analysis pipelines, includ-
ing, but not limited to, differentiation (JAX), parallelization (Dask), and just-in-time compilation
(Numba). There are ongoing efforts to make Awkward Arrays compatible with CUDA, allowing
physicists to accelerate their analysis using GPUs. The recent work of putting Awkward Arrays on
GPUs has garnered interest from high energy physicists, especially Coffea developers, to accelerate
the analysis framework for future HL-LHC runs. Though the work on Awkward Arrays is being
carried out, more pieces are required to perform a complete analysis of HEP data on GPUs. One of
the major pieces is the ability to generate and manipulate histograms on CUDA, allowing physicists
to perform a complete analysis leveraging the entire Scikit-HEP ecosystem on GPUs.

Before this thesis, Coffea had a prototype implementation of histograms on CUDA, but the
implementation was specific to Coffea. This thesis aimed to generalize and broaden the existing
implementation of histograms on CUDA by developing a UHI-compliant stand-alone library –
cuda-histogram. Furthermore, Coffea has been trying to incorporate broader libraries to replace its
internal, more focused, modules. One such instance is the ongoing migration of Coffea’s vector
classes to Scikit-HEP/vector. This project will tie up with keeping the cuda-histogram functionality
outside of Coffea for a broader audience.

At the time of writing this thesis, the cuda-histogram project is still in progress and under
scrutiny. In the upcoming months, the project will be refined, made UHI-compatible, transformed
into a standalone Scikit-HEP package, go through hyperoptimization routines, and finally used
within Coffea as a dependency.

43

Bibliography

1962. The CERN proton synchrotron.

2021. Building and steering template fits with cabinetry. Zenodo. URL https://doi.org/10.
5281/zenodo.4627038.

AAD, G., ET AL. 2008. The ATLAS Experiment at the CERN Large Hadron Collider. JINST
3.S08003.

AAMODT, K., ET AL. 2008. The ALICE experiment at the CERN LHC. JINST 3.S08002.

ABADI, MARTÍN; ASHISH AGARWAL; PAUL BARHAM; EUGENE BREVDO; ZHIFENG CHEN;
CRAIG CITRO; GREG S. CORRADO; ANDY DAVIS; JEFFREY DEAN; MATTHIEU DEVIN; SAN-
JAY GHEMAWAT; IAN GOODFELLOW; ANDREW HARP; GEOFFREY IRVING; MICHAEL ISARD;
YANGQING JIA; RAFAL JOZEFOWICZ; LUKASZ KAISER; MANJUNATH KUDLUR; JOSH LEV-
ENBERG; DANDELION MANÉ; RAJAT MONGA; SHERRY MOORE; DEREK MURRAY; CHRIS

OLAH; MIKE SCHUSTER; JONATHON SHLENS; BENOIT STEINER; ILYA SUTSKEVER; KUNAL

TALWAR; PAUL TUCKER; VINCENT VANHOUCKE; VIJAY VASUDEVAN; FERNANDA VIÉGAS;
ORIOL VINYALS; PETE WARDEN; MARTIN WATTENBERG; MARTIN WICKE; YUAN YU;
und XIAOQIANG ZHENG. 2015. TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org. URL https://www.tensorflow.org/.

AGOSTINELLI, S., ET AL. 2003. GEANT4: A simulation toolkit. Nucl. Instrum. Meth. A506.250–
303.

ALVES, A. AUGUSTO, JR., ET AL. 2008. The LHCb Detector at the LHC. JINST 3.S08005.

ANSEL, JASON; EDWARD YANG; HORACE HE; NATALIA GIMELSHEIN; ANIMESH JAIN;
MICHAEL VOZNESENSKY; BIN BAO; PETER BELL; DAVID BERARD; EVGENI BUROVSKI;
GEETA CHAUHAN; ANJALI CHOURDIA; WILL CONSTABLE; ALBAN DESMAISON; ZACHARY

DEVITO; ELIAS ELLISON; WILL FENG; JIONG GONG; MICHAEL GSCHWIND; BRIAN HIRSH;
SHERLOCK HUANG; KSHITEEJ KALAMBARKAR; LAURENT KIRSCH; MICHAEL LAZOS;
MARIO LEZCANO; YANBO LIANG; JASON LIANG; YINGHAI LU; CK LUK; BERT MA-
HER; YUNJIE PAN; CHRISTIAN PUHRSCH; MATTHIAS RESO; MARK SAROUFIM; MAR-
COS YUKIO SIRAICHI; HELEN SUK; MICHAEL SUO; PHIL TILLET; EIKAN WANG; XI-
AODONG WANG; WILLIAM WEN; SHUNTING ZHANG; XU ZHAO; KEREN ZHOU; RICHARD

ZOU; AJIT MATHEWS; GREGORY CHANAN; PENG WU; und SOUMITH CHINTALA. 2024.
PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation
and Graph Compilation. 29th acm international conference on architectural support for

44

https://doi.org/10.5281/zenodo.4627038
https://doi.org/10.5281/zenodo.4627038
https://www.tensorflow.org/

45

programming languages and operating systems, volume 2 (asplos ’24). ACM. URL https:
//pytorch.org/assets/pytorch2-2.pdf.

BERTONE, C., ET AL. 2011. The Linac4 Project at CERN. Conf. Proc. C 110904.900–902.

BEZANSON, JEFF; ALAN EDELMAN; STEFAN KARPINSKI; und VIRAL B SHAH. 2017. Julia: A
fresh approach to numerical computing. SIAM review 59.65–98. URL https://doi.org/10.
1137/141000671.

BOCKELMAN, BRIAN; WLCG/HSF; FERMILAB; MORGRIDGE; NOTRE DAME; PRINCETON;
U. CHICAGO; NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS; U. NE-
BRASKA; UT-AUSTIN; U. WASHINGTON; U. WISCONSIN; MORGRIDGE; IRIS-HEP;
WLCG; USATLAS; USCMS; U. CHICAGO; CERN; ATLAS; CMS; ATLAS PHYS-
LITE; CMS NANOAOD; und XCACHE. IRIS-HEP 200Gbps challenge. Tech. rep. URL
https://indico.cern.ch/event/1369601/contributions/5924000/attachments/
2856630/4998936/IRIS-HEP%20200Gbps%20-%20WLCG%20Workshop%20-%20v1.pdf.

BOOST. 2015. Boost C++ Libraries. http://www.boost.org/. Last accessed 2024-07-08.

BRADBURY, JAMES; ROY FROSTIG; PETER HAWKINS; MATTHEW JAMES JOHNSON; CHRIS

LEARY; DOUGAL MACLAURIN; GEORGE NECULA; ADAM PASZKE; JAKE VANDERPLAS;
SKYE WANDERMAN-MILNE; und QIAO ZHANG. 2018. JAX: composable transformations of
Python+NumPy programs. URL http://github.com/google/jax.

BRUN, RENE; FONS RADEMAKERS; PHILIPPE CANAL; AXEL NAUMANN; OLIVIER COUET;
LORENZO MONETA; VASSIL VASSILEV; SERGEY LINEV; DANILO PIPARO; GERARDO GA-
NIS; BERTRAND BELLENOT; ENRICO GUIRAUD; GUILHERME AMADIO; WVERKERKE;
PERE MATO; TIMURP; MATEVŽ TADEL; WLAV; ENRIC TEJEDOR; JAKOB BLOMER; AN-
DREI GHEATA; STEPHAN HAGEBOECK; STEFAN ROISER; MARSUPIAL; STEFAN WUN-
SCH; OKSANA SHADURA; ANIRUDHA BOSE; CRISTINACRISTESCU; XAVIER VALLS; und
RAPHAEL ISEMANN. 2020. root-project/root: v6.18/02. URL https://doi.org/10.5281/
zenodo.3895860.

CHATRCHYAN, S., ET AL. 2008. The CMS Experiment at the CERN LHC. JINST 3.S08004.

CHEN, YI-MU. [FEATURE] Non-uniform rebinning · Issue 345 · scikit-hep/hist. URL https:
//github.com/scikit-hep/hist/issues/345.

DASK-CONTRIB. GitHub - dask-contrib/dask-awkward: Native Dask collection for awkward arrays,
and the library to use it. URL https://github.com/dask-contrib/dask-awkward.

DASK DEVELOPMENT TEAM. 2016. Dask: Library for dynamic task scheduling. URL http:
//dask.pydata.org.

DAWE, NOEL; PETER WALLER; EVAN K. FRIIS; CHRISTOPH DEIL; SCHMITTS; RUGGERO

TURRA; JEFF KLUKAS; SCOTT STEVENSON; QUENTIN BUAT; CHRISBOO; ALESSANDRO;
MAURO VERZETTI; LUKE KRECZKO; JEROEN HEGEMAN; und MATT HOLLINGSWORTH.
2015. rootpy: 0.8.0. URL https://doi.org/10.5281/zenodo.18897.

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://indico.cern.ch/event/1369601/contributions/5924000/attachments/2856630/4998936/IRIS-HEP%20200Gbps%20-%20WLCG%20Workshop%20-%20v1.pdf
https://indico.cern.ch/event/1369601/contributions/5924000/attachments/2856630/4998936/IRIS-HEP%20200Gbps%20-%20WLCG%20Workshop%20-%20v1.pdf
http://www.boost.org/
http://github.com/google/jax
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://github.com/scikit-hep/hist/issues/345
https://github.com/scikit-hep/hist/issues/345
https://github.com/dask-contrib/dask-awkward
http://dask.pydata.org
http://dask.pydata.org
https://doi.org/10.5281/zenodo.18897

46

DEMBINSKI, HANS, und PITI ONGMONGKOLKUL ET AL. 2020. scikit-hep/iminuit. URL https:
//doi.org/10.5281/zenodo.3949207.

DOBLE, NIELS; LAU GATIGNON; KURT HÜBNER; und EDMUND WILSON. 2017. The Super
Proton Synchrotron (SPS): A Tale of Two Lives. Adv. Ser. Direct. High Energy Phys. 27.135–177.

ELMER, PETER; MARK NEUBAUER; und MICHAEL D. SOKOLOFF. 2018. Strategic plan for a
scientific software innovation institute (s2i2) for high energy physics. URL https://arxiv.
org/abs/1712.06592.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, und OPENAIRE. 2013. Zenodo. URL
https://www.zenodo.org/.

FEIKERT, MATTHEW. Slack. URL https://iris-hep.slack.com/archives/C025BUK9V16/
p1705438456376999.

GOWDA, SHASHI; YINGBO MA; ALESSANDRO CHELI; MAJA GWÓŹZDŹ; VIRAL B. SHAH;
ALAN EDELMAN; und CHRISTOPHER RACKAUCKAS. 2022. High-performance symbolic-
numerics via multiple dispatch. ACM Commun. Comput. Algebra 55.92–96. URL https:
//doi.org/10.1145/3511528.3511535.

GRADHEP. gradHEP. URL https://github.com/gradhep.

GRAY, LINDSEY; NICHOLAS SMITH; ANDRZEJ NOVAK; PETER FACKELDEY; BENJAMIN TOVAR;
YI-MU CHEN; GORDON WATTS; und IASON KROMMYDAS. 2023. coffea. URL https:
//github.com/CoffeaTeam/coffea.

GUEST, DAN; KYLE CRANMER; und DANIEL WHITESON. 2018. Deep Learning and its Applica-
tion to LHC Physics. Ann. Rev. Nucl. Part. Sci. 68.161–181.

HARRIS, CHARLES R.; K. JARROD MILLMAN; STÉFAN J. VAN DER WALT; RALF GOM-
MERS; PAULI VIRTANEN; DAVID COURNAPEAU; ERIC WIESER; JULIAN TAYLOR; SEBAS-
TIAN BERG; NATHANIEL J. SMITH; ROBERT KERN; MATTI PICUS; STEPHAN HOYER;
MARTEN H. VAN KERKWIJK; MATTHEW BRETT; ALLAN HALDANE; JAIME FERNÁNDEZ

DEL R ÍO; MARK WIEBE; PEARU PETERSON; PIERRE GÉRARD-MARCHANT; KEVIN SHEP-
PARD; TYLER REDDY; WARREN WECKESSER; HAMEER ABBASI; CHRISTOPH GOHLKE; und
TRAVIS E. OLIPHANT. 2020. Array programming with NumPy. Nature 585.357–362. URL
https://doi.org/10.1038/s41586-020-2649-2.

HEINRICH, LUKAS; MATTHEW FEICKERT; und GIORDON STARK. pyhf: v0.7.6. URL https:
//github.com/scikit-hep/pyhf/releases/tag/v0.7.6.

HELD, ALEXANDER. a. Add rebinning functionality · Issue 412 · scikit-hep/cabinetry. URL
https://github.com/scikit-hep/cabinetry/issues/412.

HELD, ALEXANDER. b. GitHub - alexander-held/agc-autodiff: AD for the Analysis Grand Chal-
lenge. URL https://github.com/alexander-held/agc-autodiff.

https://doi.org/10.5281/zenodo.3949207
https://doi.org/10.5281/zenodo.3949207
https://arxiv.org/abs/1712.06592
https://arxiv.org/abs/1712.06592
https://www.zenodo.org/
https://iris-hep.slack.com/archives/C025BUK9V16/p1705438456376999
https://iris-hep.slack.com/archives/C025BUK9V16/p1705438456376999
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3511528.3511535
https://github.com/gradhep
https://github.com/CoffeaTeam/coffea
https://github.com/CoffeaTeam/coffea
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/scikit-hep/pyhf/releases/tag/v0.7.6
https://github.com/scikit-hep/pyhf/releases/tag/v0.7.6
https://github.com/scikit-hep/cabinetry/issues/412
https://github.com/alexander-held/agc-autodiff

47

HELD, ALEXANDER; OKSANA SHADURA; MATTHEW FEICKERT; JAYJEET CHAKRABORTY;
MASON PROFFITT; KYUNGEON CHOI; ANDRZEJ NOVAK; DAVID KOCH; MAT ADAMEC;
SARANSH CHOPRA; und STORM LIN. 2022. iris-hep/analysis-grand-challenge: v0.1.0. URL
https://doi.org/10.5281/zenodo.7274937.

INC., WOLFRAM RESEARCH,. Mathematica, Version 14.0. Champaign, IL, 2024. URL https:
//www.wolfram.com/mathematica.

INNES, MICHAEL. 2018. Don’t unroll adjoint: Differentiating ssa-form programs. CoRR
abs/1810.07951. URL http://arxiv.org/abs/1810.07951.

KOCH, LUKAS; HENRY SCHREINER; EDUARDO RODRIGUES; MICHAEL HALL; und MATTHEW

FEICKERT. 2022. scikit-hep/histoprint: v2.4.0. URL https://doi.org/10.5281/zenodo.
6600707.

LAM, SIU KWAN; ANTOINE PITROU; und STANLEY SEIBERT. 2015. Numba: a llvm-based
python jit compiler. Proceedings of the second workshop on the llvm compiler infrastructure
in hpc, LLVM ’15. New York, NY, USA: Association for Computing Machinery. URL https:
//doi.org/10.1145/2833157.2833162.

MEURER, AARON; CHRISTOPHER P. SMITH; MATEUSZ PAPROCKI; ONDŘEJ ČERTÍK; SERGEY B.
KIRPICHEV; MATTHEW ROCKLIN; AMIT KUMAR; SERGIU IVANOV; JASON K. MOORE; SAR-
TAJ SINGH; THILINA RATHNAYAKE; SEAN VIG; BRIAN E. GRANGER; RICHARD P. MULLER;
FRANCESCO BONAZZI; HARSH GUPTA; SHIVAM VATS; FREDRIK JOHANSSON; FABIAN

PEDREGOSA; MATTHEW J. CURRY; ANDY R. TERREL; ŠTĚPÁN ROUČKA; ASHUTOSH

SABOO; ISURU FERNANDO; SUMITH KULAL; ROBERT CIMRMAN; und ANTHONY SCO-
PATZ. 2017. Sympy: symbolic computing in python. PeerJ Computer Science 3.e103. URL
https://doi.org/10.7717/peerj-cs.103.

PASZKE, ADAM; SAM GROSS; FRANCISCO MASSA; ADAM LERER; JAMES BRADBURY;
GREGORY CHANAN; TREVOR KILLEEN; ZEMING LIN; NATALIA GIMELSHEIN; LUCA

ANTIGA; ALBAN DESMAISON; ANDREAS KOPF; EDWARD YANG; ZACHARY DEVITO;
MARTIN RAISON; ALYKHAN TEJANI; SASANK CHILAMKURTHY; BENOIT STEINER;
LU FANG; JUNJIE BAI; und SOUMITH CHINTALA. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing sys-
tems 32, 8024–8035. Curran Associates, Inc. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

PERUZZI, MARCO; GIOVANNI PETRUCCIANI; ANDREA RIZZI; und FOR THE CMS COLLABO-
RATION. 2020. The nanoaod event data format in cms. Journal of Physics: Conference Series
1525.012038. URL https://dx.doi.org/10.1088/1742-6596/1525/1/012038.

PIVARSKI, JIM. Awkward array hierarchy example. URL https://github.com/scikit-hep/
awkward/blob/main/docs-img/diagrams/example-hierarchy.png.

https://doi.org/10.5281/zenodo.7274937
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
http://arxiv.org/abs/1810.07951
https://doi.org/10.5281/zenodo.6600707
https://doi.org/10.5281/zenodo.6600707
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.7717/peerj-cs.103
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://dx.doi.org/10.1088/1742-6596/1525/1/012038
https://github.com/scikit-hep/awkward/blob/main/docs-img/diagrams/example-hierarchy.png
https://github.com/scikit-hep/awkward/blob/main/docs-img/diagrams/example-hierarchy.png

48

PIVARSKI, JIM, und SARANSH CHOPRA. 2024a. A new sympy backend for vector: uniting
experimental and theoretical physicists. Proceedings of the 7th python in high energy physics
workshop.

PIVARSKI, JIM, und SARANSH CHOPRA. 2024b. A new sympy backend for vector: uniting
experimental and theoretical physicists. Proceedings of the 27th international conference on
computing in high energy physics.

PIVARSKI, JIM; LUKAS; EDUARDO RODRIGUES; DMITRY KALINKIN; und CLEMENS LANGE.
2018a. scikit-hep/histbook: 1.2.5. URL https://doi.org/10.5281/zenodo.1478738.

PIVARSKI, JIM; IANNA OSBORNE; IOANA IFRIM; HENRY SCHREINER; ANGUS HOLLANDS;
ANISH BISWAS; PRATYUSH DAS; SANTAM ROY CHOUDHURY; NICHOLAS SMITH; und
MANASVI GOYAL. 2018b. Awkward Array.

PIVARSKI, JIM; HENRY SCHREINER; ANGUS HOLLANDS; PRATYUSH DAS; KUSH KOTHARI;
ARYAN ROY; JERRY LING; NICHOLAS SMITH; CHRIS BURR; und GIORDON STARK. 2017.
Uproot.

REICH, K H. The cern proton synchrotron booster. IEEE (Inst. Elec. Electron. Eng.), Trans. Nucl.
Sci., NS-16: 959- 61(June 1969). URL https://www.osti.gov/biblio/4773934.

RODRIGUES, EDUARDO, und HENRY SCHREINER. a. DecayLanguage. URL https://github.
com/scikit-hep/decaylanguage.

RODRIGUES, EDUARDO, und HENRY SCHREINER. b. Particle. URL https://github.com/
scikit-hep/particle.

RODRIGUES, EDUARDO, ET AL. 2020. The Scikit HEP Project – overview and prospects. EPJ
Web Conf. 245.06028.

ROSADO, TIAGO, und JORGE BERNARDINO. 2014. An overview of openstack architecture.
Proceedings of the 18th international database engineering & applications symposium, IDEAS
’14, 366–367. New York, NY, USA: Association for Computing Machinery. URL https://doi.
org/10.1145/2628194.2628195.

SCHREINER, HENRY. a. Full UHI · Issue 208 · scikit-hep/boost-histogram. URL https://github.
com/scikit-hep/boost-histogram/issues/208.

SCHREINER, HENRY. b. GitHub - henryiii/hepvector: Redesigned as Scikit-HEP: vector! URL
https://github.com/henryiii/hepvector.

SCHREINER, HENRY; HANS DEMBINSKI; AMAN GOEL; JAY GOHIL; N!NO; JONAS ES-
CHLE; CHANCHAL MAJI; ANDRZEJ NOVAK; CHRIS BURR; DOUG DAVIS; KILIAN LIERET;
KONSTANTIN GIZDOV; KYLE CRANMER; MATTHEW FEICKERT; und PIERRE GRIMAUD.
2023a. scikit-hep/boost-histogram: Version 1.4.0. URL https://doi.org/10.5281/zenodo.
8336454.

https://doi.org/10.5281/zenodo.1478738
https://www.osti.gov/biblio/4773934
https://github.com/scikit-hep/decaylanguage
https://github.com/scikit-hep/decaylanguage
https://github.com/scikit-hep/particle
https://github.com/scikit-hep/particle
https://doi.org/10.1145/2628194.2628195
https://doi.org/10.1145/2628194.2628195
https://github.com/scikit-hep/boost-histogram/issues/208
https://github.com/scikit-hep/boost-histogram/issues/208
https://github.com/henryiii/hepvector
https://doi.org/10.5281/zenodo.8336454
https://doi.org/10.5281/zenodo.8336454

49

SCHREINER, HENRY; HANS DEMBINSKI; KILIAN LIERET; und PIETER DAVID. 2023b. scikit-
hep/uhi: Version 0.4.0. URL https://doi.org/10.5281/zenodo.10014713.

SCHREINER, HENRY; SHUO LIU; und AMAN GOEL. a. hist. URL https://github.com/
scikit-hep/hist.

SCHREINER, HENRY; JIM PIVARSKI; und SARANSH CHOPRA. b. vector. URL https://github.
com/scikit-hep/vector.

SCIKIT-HEP. GitHub - scikit-hep/aghast: Aghast: aggregated, histogram-like statistics, sharable as
Flatbuffers. URL https://github.com/scikit-hep/aghast.

SIMPSON, NATHAN. 2023a. Data Analysis in High-Energy Physics as a Differentiable Program.
Presented 03 Feb 2023. URL https://cds.cern.ch/record/2846434.

SIMPSON, NATHAN. 2023b. relaxed: version 0.3.0. URL https://github.com/gradhep/
relaxed.

SIMPSON, NATHAN, und LUKAS HEINRICH. 2021. neos: version 0.2.0. URL https://github.
com/gradhep/neos.

SJÖSTRAND, TORBJÖRN; STEFAN ASK; JESPER R. CHRISTIANSEN; RICHARD CORKE; NISHITA

DESAI; PHILIP ILTEN; STEPHEN MRENNA; STEFAN PRESTEL; CHRISTINE O. RASMUSSEN;
und PETER Z. SKANDS. 2015. An introduction to pythia 8.2. Computer Physics Communications
191.159–177. URL http://dx.doi.org/10.1016/j.cpc.2015.01.024.

STEELE, GUY. 1990. Common lisp: the language. Elsevier.

VASSILEV, V.; M. VASSILEV; A. PENEV; L. MONETA; und V. ILIEVA. 2015. Clad – Automatic
Differentiation Using Clang and LLVM. Ausg. 608, 012055. IOP Publishing. URL https:
//iopscience.iop.org/article/10.1088/1742-6596/608/1/012055/pdf.

https://doi.org/10.5281/zenodo.10014713
https://github.com/scikit-hep/hist
https://github.com/scikit-hep/hist
https://github.com/scikit-hep/vector
https://github.com/scikit-hep/vector
https://github.com/scikit-hep/aghast
https://cds.cern.ch/record/2846434
https://github.com/gradhep/relaxed
https://github.com/gradhep/relaxed
https://github.com/gradhep/neos
https://github.com/gradhep/neos
http://dx.doi.org/10.1016/j.cpc.2015.01.024
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012055/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012055/pdf

	Abstract
	Acknowledgements
	Abbreviations
	Preface
	I Fundamentals
	An introduction to Computation in High Energy Physics
	High Energy Physics at CERN
	Computational needs for High Energy Physics
	The Scikit-HEP ecosystem

	II Computational Upgrades
	Automatic differentiation for the Scikit-HEP ecosystem
	Automatic differentiation and JAX
	Chain rule
	Forward mode
	Reverse mode
	Differentiable programming with JAX

	Need for automatic differentiation in HEP analysis pipelines
	Automatic differentiation and Awkward Arrays
	Automatic differentiation and the Analysis Grand Challenge

	Unified Histogram Interface for variable axis rebinning
	The histogramming mini-ecosystem
	Unified Histogram Interface
	The problem of non-uniform axis rebinning
	Implementing UHI for rebinning in boost-histogram

	Computational upgrades to Vector
	A quick introduction to vector
	The recent surge in Vector's usage
	Preparing Vector for future LHC/HL-LHC runs

	Coffea's new backend for vector algebra
	Coffea and its vector modules
	Coffea's vector to Scikit-HEP/vector
	Implementing Scikit-HEP/vector as a backend for Coffee's vector classes

	Vector's symbolic backend for theoretical computations
	Symbolic programming and SymPy
	Need for a symbolic backend
	Implementing a symbolic backend in Vector

	Bringing histograms to GPUs: cuda-histogram
	Bibliography

