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Abstract

High Energy Physics experiments, such as the Large Hadron Collider at CERN, produce petabytes
of data every year. Physicists require scalable and efficient scientific software to analyze and
perform physics on the obtained data.elemedis The initial frameworks and scientific software
developed for analyzing HEP data, such as ROOT (Brun et al. 2020), GEANT4 (Agostinelli et al.
2003), and BOOST (Boost 2015), were written in C and C++; hence, such software had and still
have a steep learning curve, especially for physicists with no programming background. Multiple
HEP ecosystems have emerged in languages that are comparatively easy to pick up, such as the
IRIS-HEP (Elmer et al. 2018) ecosystem in Python. This thesis began as a bid to implement the
remaining pieces of Automatic Differentiation in Awkward Arrays (Pivarski et al. 2018b), Vector
(Schreiner et al. b), and Coffea (Gray et al. 2023) but soon expanded to work on multiple other
computational upgrades to the IRIS-HEP ecosystem. More specifically, this thesis extends the
support of AD in Awkward Arrays, implements the Unified Histogram Interface (Schreiner et al.
2023b) for rebinning in boost-histogram (Schreiner et al. 2023a), migrates Coffea’s vector algebra
backend to Scikit-HEP/vector, and implements a symbolic backend in Vector. The work also
includes several computational upgrades specifically in Vector to meet its rapidly growing user
base. Finally, this thesis also includes development of a new Python package, cuda-histogram, to
support Histogramming on GPUs for HEP data analysis pipelines. The work carried out in the past
six months has already been integrated into the data analysis pipelines of physicists all around the
globe. Furthermore, the upcoming upgrade of the Large Hadron Collider to the High-Luminosity
Large Hadron Collider demands an even fine-grained suite of software, and the work carried out
during this thesis adds up to these upgrades.

Keywords: scientific computing, high energy physics, differentiable programming, analy-
sis systems, columnar analysis, vector algebra, histogramming, symbolic programming, GPU
programming
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Chapter 1

An introduction to Computation in High
Energy Physics

What is a Computer Science student doing at CERN? This chapter introduces the computations
required by experiments and the HEP research at CERN. Before reaching the computational part, it
is imperative to outline how HEP research is carried out at CERN’s flagship experiment, the Large
Hadron Collider.

1.1 High Energy Physics at CERN
CERN or the Conseil européen pour la Recherche Nucléaire (European Organisation for Nuclear
Research), was founded in 1952 with the aim of collecting researchers at a single, state-of-the-art
facility to combat the after-effects of World War 2. Since then, CERN has grown exponentially
and is now known for HEP and carrying out incredible research in engineering, computer science,
and pure sciences other than physics. CERN houses multiple cutting-edge experiments with one
goal: studying the universe at the atomic level. The flagship experiment of CERN, the LHC
or the Large Hadron Collider, is a 27-kilometer ring situated 100 meters underground, capable
of colliding particles such as protons as well as heavy ions. The LHC is the world’s largest
experiment and the most powerful particle accelerator ever built. The high-energy particle beams
are accelerated at almost the speed of light in opposite directions and are guided in a circular track
using superconducting electromagnets.

The particles start as a Hydrogen atom and are accelerated in Linac4 (Bertone et al. 2011), a
linear accelerator, before passing into the Proton Synchrotron Booster (Reich). These high-energy
beams are stripped off of their electrons when they leave Linac4 and are passed onto the Proton
Synchrotron (ps 1962) next. Once accelerated at a threshold, the beams are redirected to the Super
Proton Synchrotron (Doble et al. 2017). Until this step, the beams rotate in a single direction, but
the beams split into two and go in opposite directions once they are released from the Super Proton
Synchrotron into the Large Hadron Collider,

The collider houses four broad experiments or detectors: ATLAS (Aad et al. 2008), CMS
(Compact Muon Solenoid) (Chatrchyan et al. 2008), LHCb (Large Hadron Collider beauty) (Alves
et al. 2008), and ALICE (A Large Ion Collider Experiment) (Aamodt et al. 2008). ATLAS and CMS

4



5

are two general-purpose detectors built with the same goal but different approaches. The particles
collide at the center of these detectors, and the detectors take a snapshot of the collision event for
the physicists. ATLAS and CMS can register the created particles’ paths, momentum, and energy.
Additionally, CMS is also involved in searching for extra dimensions and particles that could make
up dark matter. On the other hand, the LHCb and the ALICE experiments work differently from the
two general-purpose detectors. LHCb investigates the differences between matter and antimatter
by studying the beauty quark, and ALICE records the collisions of heavy ions (such as Lead and
Oxygen ions) to examine the state of the universe that existed right after its birth by producing
quark-gluon plasma.

The particle collisions transform energy to produce particles that might not readily exist in
nature. The created particles travel in a straight line, but electromagnets are used to curve their
trajectories and gather information about them. Physicists use several data points and types of
equipment to gather evidence about the newly produced particles. For instance, a particle with a
lower momentum is deflected more by the magnetic field than a particle with a higher momentum.
Several other factors, including but not limited to energy loss (measured by calorimeters), the
trajectory of the particles (reconstructed using tracking devices and machine learning algorithms),
the emittance of Cherenkov radiation, particle’s velocity, and particle’s characteristic (muons can
pass through most of the matter) are used at HEP experiments to gather information about the
collision event. The unstable particles created during collisions further decay before being detected,
thus creating a chain of decay that can be backtracked by applying physics to the gathered data.

1.2 Computational needs for High Energy Physics
The work at CERN operates at the intersection of Engineering, Computer Science, and pure Sciences
like Physics and Mathematics. The particle collisions in the detectors generate tons of data. This data
goes through advanced trigger systems that filter the events and flow them to the storage facilities.
The collected data requires state-of-the-art computational methods for analyzing and extracting
physics. CERN’s computational infrastructure ranges from OpenStack (Rosado & Bernardino
2014), an open-source Infrastructure-as-a-Service cloud platform, to ROOT, an analysis framework
for high-energy data, to Zenodo (European Organization For Nuclear Research & OpenAIRE 2013),
and open source, open access, open science platform, to finally, Geant4, a simulation toolkit for
high energy physics.

This thesis focuses on developing the data analysis tools or pipelines used at CERN to perform
physics with the data captured by CERN’s detectors. The particle collisions at the LHC produce a
petabyte of data each second, which is stored in places like the CERN’s data center. CERN has made
numerous technological advancements to handle and process the sheer amount of data produced.
For instance, the problem of sharing data and information amongst scientists led to the development
of the World Wide Web at CERN. Analysis of this ever-increasing data has been challenging since
the inception of CERN, and several efforts are in place to make this easier as time passes. Moreover,
with the upcoming upgrade of the LHC to the HL-LHC, it has become imperative to improve the
existing software suites to handle the surge in incoming data.

ROOT, started in 1995, is CERN’s first comprehensive and still functioning in-house solution
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to the challenges faced by physicists while analyzing HEP data. ROOT provides physicists with
the ability to read, write, analyze, mine, and plot the data, as well as interactively play with it. The
original ROOT framework is written in C++, making it highly efficient and scalable, but also making
it infamous amongst physicists for having an extremely steep learning curve. ROOT does provide
bindings in other languages, such as Python and R, but the comfort of writing code using these
bindings comes at the cost of speed and efficiency. Recent efforts have been made to write HEP
software in interpreted and just-in-time compiled languages from scratch. These new frameworks
and libraries are slowly being integrated at CERN, but ROOT remains the most used software for
data analysis for HEP.

1.3 The Scikit-HEP ecosystem
The Scikit-HEP (Rodrigues et al. 2020) ecosystem provides tools for analyzing HEP data using
Python. The project is primarily maintained by IRIS-HEP, a software institute developing and
working on the challenges of data-intensive scientific research at the HL-LHC experiment at CERN.
The Scikit-HEP ecosystem is a modular ecosystem providing users with an interface for datasets,
aggregations, modeling, simulation, and visualization. The ecosystem blends well with the other
Python ecosystems and even C++ high-energy frameworks like ROOT. The ecosystem is already
used within multiple HEP experiments in and outside CERN. Further, CERN’s software pipeline,
including ROOT, readily adopts bits and pieces from the Scikit-HEP ecosystem for improvements.

Library Function
Awkward Array Manipulate JSON-like data with NumPy-like idioms
Vector Manipulate Lorentz, 3D, and 2D vectors
Uproot (Pivarski et al. 2017) ROOT I/O in pure Python and NumPy
Uproot Browser Terminal browser and tools for ROOT files
Boost-histogram Python bindings for the C++14 Boost::Histogram library
Hist (Schreiner et al. a) Hist is a analyst friendly front-end for boost-histogram
Decay (Rodrigues & Schreiner a) Describe and convert particle decays
Particle (Rodrigues & Schreiner b) PDG particle data and identification codes
iminuit (Dembinski & et al. 2020) Jupyter-friendly Python interface for the Minuit2
Cabinetry (cra 2021) Design and steer profile likelihood fits
pyhf (Heinrich et al.) pure-Python implementation of HistFactory models

Table 1.1: A few Scikit-HEP projects and their functionality.

Scikit-HEP also encompasses projects like ROOT’s distribution on conda-forge, cibuildwheel,
a utility for building all PyPI-supported binary wheels, and Pybind11, a C++11 API for CPython
and PyPy. This thesis aims to upgrade the Scikit-HEP ecosystem for both, niche HEP and general
programming use cases. Most of the work in this thesis was carried out on Scikit-HEP, preparing it
for the challenges posed by the future of HEP experiments at CERN and other research institutes.
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Chapter 2

Automatic differentiation for the Scikit-HEP
ecosystem

2.1 Automatic differentiation and JAX
Automatic differentiation, or AD, is a methodology used to evaluate derivatives using computer
systems. AD uses the chain rule as the fundamental algorithm behind its work and is broadly
categorized into two types: forward mode and reverse mode. In AD, the chain rule is repeatedly
applied to the operations until the final derivative value is obtained. The usage of chain rule
distinguishes AD from symbolic and numerical differentiation, making it a better choice for
scientists. Numerical differentiation produces round-off and discretization errors, given that the
obtained derivative value is generated using approximation algorithms, but AD outputs the exact
derivative value. Unlike numerical differentiation, though symbolic differentiation can give exact
gradients along with the gradient expressions, it is prone to phenomena like expression swell and
does not scale well.

2.1.1 Chain rule
The chain rule allows computing the derivative of composite differentiable functions in terms of the
functions itself. Following the Langrage notation, the derivative of a function h(x), expressed as the
composition of functions f and g (h = f ◦g), can be calculated as -

h′ = ( f ′ ◦g).g′

One can also express the rule using Leibnitz notation, where a depends on z, z depends on y,
and y depends on x -

da
dx

=
da
dz

.
dz
dy

.
dy
dx

2.1.2 Forward mode
The forward mode AD computes the chained derivatives bottom-up, that is, evaluating the last
expression in the chain rule first and the first expression at last. More formally, the forward mode

8
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AD computes the following recursive relation -

∂wi

∂x
=

∂wi

∂wi−1

∂wi−1

∂x

with the initial case, wi = y.

Forward mode AD performs one pass for each variable, calculating the function value and
the derivative in the same pass. Therefore, this type of AD is preferred for functions with a lower
number of independent variables, allowing a lower number of passes. For a function defined as
f : Rn → Rm, the forward mode will compute the final result in n passes; hence, it is considered
efficient if n << m.

2.1.3 Reverse mode
The reverse mode AD computes the chained derivatives top-down, that is, evaluating the first
expression in the chain rule first and the last expression at last. More formally, the reverse mode
AD computes the following recursive relation -

∂y
∂wi

=
∂y

∂wi+1

∂wi+1

∂w

with the initial case, w0 = x.

Reverse mode AD performs one pass to evaluate the function and another pass to calculate
the partial derivatives for every independent variable. For a function defined as f : Rn → Rm, the
forward mode will compute the final result in m passes; hence, it is considered efficient if n >> m.

2.1.4 Differentiable programming with JAX
Differentiable programming is a programming paradigm where the written program is differentiable
using techniques like AD. Differentiable programming languages generally generate a compiled
or a dynamic computational graph for the written code, which is used to differentiate the program
using AD. Compiled graphs can use compiler optimizations to speed up and scale computations but
are usually complex to reason or debug. On the other hand, dynamic graphs can miss important
compiler optimizations and might not scale well with data, but this operation is much more readable
and accessible to debug. Software like Tensorflow (Abadi et al. 2015) and Clad (Vassilev et al.
2015) generate a compiled graph for AD, whereas libraries like PyTorch (Ansel et al. 2024) (Paszke
et al. 2019) and NumPy (Harris et al. 2020) rely on dynamic graphs for AD. Interestingly, Julia’s
(Bezanson et al. 2017) Zygote.jl (Innes 2018) extracts the best of both worlds and generates a
graph on Julia’s intermediate representation, leveraging the just-in-time compiler for compiler
optimizations.

JAX (Bradbury et al. 2018) is a Python library for high-performance computing, program
transformations, and differentiable programming. The language follows the functional and differen-
tiable programming paradigm, allowing users to write safe and differentiable code. Like Julia, JAX
can be compiled just-in-time, allowing its dynamic computation graph to be statically compiled.
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The static compilation enables compiler optimizations to work on the graph while differentiating
it. JAX also provides a way to extend its AD capabilities to user-defined data structures using the
register_pytree_node function. register_pytree_node only requires the users to specify a
way to flatten and unflatten the custom data structure, handling everything else on its own.

JAX is compatible with NumPy, the fundamental numerical computing library for the IRIS-
HEP and Scikit-HEP ecosystem, making it a perfect choice for implementing AD. Furthermore, the
existing efforts to introduce AD in the IRIS-HEP ecosystem, including the work done by gradhep
(gradHEP), rely on JAX. The existence of JAX in the IRIS-HEP ecosystem makes it an even better
choice for other libraries in the same ecosystem.

2.2 Need for automatic differentiation in HEP analysis pipelines
HEP data analysis pipelines require tuning several free parameters to either precisely measure the
known measurements of the standard model or to detect new particles. For instance, (Simpson 2023a)
shows how machine learning algorithms are utilized to extract relevant data or discriminate the
required signal from background noise in HEP pipelines. Specialized machine learning algorithms
such as gradient descent work well on specific tasks, but such algorithms are often optimized only
for a single physics task. The specialization of these algorithms does not account for systematic
uncertainties and removes several steps from the ultimate physical goal of searching for a new
particle or testing a new physical theory (Guest et al. 2018).

(Simpson 2023a) further shows how having a differentiable program on the statistical side of
HEP pipelines can help overcome the limitations of traditional loss functions. The work mentions
how p-value can be a good objective function for some analysis tasks, requiring the function and the
subset of the program to be differentiable. The existing program will have to be differentiated in its
entirety to reach the p-value function, which is not possible or highly inefficient in most cases. This
paves the way for making standalone modular chunks in the HEP pipelines differentiable. Therefore,
allowing the fundamental libraries such as Awkward Arrays and Vector, which are required for
manipulating and performing initial physics with HEP data, becomes imperative.

2.3 Automatic differentiation and Awkward Arrays
Awkward Arrays are designed to handle the non-uniform nature of HEP data by providing jagged
array structures. The library offers NumPy-like idioms for jagged data, enhancing the speed,
scalability, and efficiency of HEP analysis in Python. Rather than representing data as jagged arrays
in memory, Awkward Arrays store data linearly while specifying a nested data structure with offsets
as metadata. This approach allows users and the memory management system to switch between
jagged and linear array representations. Figure 2.1 illustrates the memory representation of an
Awkward Array.

Given that JAX requires users to specify methods for flattening and unflattening data structures
for differentiation, an Awkward Array is initially flattened into NumpyArrays before being passed to
the necessary JAX function. Once flattened, Awkward slices, ufuncs, and behavior are managed to
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Figure 2.1: Representing an Awkward array in the memory (Pivarski).

ensure interoperability between the Awkward Array and JAX’s DeviceArray. Although this data
structure becomes differentiable via JAX, it is not yet in a user-ready format. After obtaining results
from JAX, the flattened array is reassembled into an Awkward Array using the stored metadata. The
unflattened array is then returned to the user, thereby abstracting the underlying JAX and Awkward
interoperability. Figure 2.2 graphically illustrates the compatibility of an Awkward Array with JAX
and its automatic differentiation system.

Figure 2.2: Interoperability between Awkward’s Array and JAX’s DeviceArray.

Example 2.1 shows how Awkward’s JAX backend can be used to compute the jacobian-vector
product and gradient of jagged data. The example highlights how the backend can handle NumPy
and Awkward ufuncs, complex slicing, as well as jagged data without any issues.

import j a x
import awkward as ak
import numpy as np

ak . j a x . r e g i s t e r a n d c h e c k ( )

def f ( x ) :
re turn np . power ( x [ [ 2 , 2 , 0 ] , : : − 1 ] , 3 )
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p r i m a l s = ak . Array ( [ [ 1 . , 2 . , 3 . ] , [ ] , [ 5 . , 6 . ] ] , backend =” j a x ” )
t a n g e n t s = ak . Array ( [ [ 0 . , 1 . , 0 . ] , [ ] , [ 0 . , 0 . ] ] , backend =” j a x ” )

va l , g r ad = j a x . j v p ( f , ( p r i m a l s , ) , ( t a n g e n t s , ) )
# <Array [ [ 2 1 6 . 0 , 1 2 5 . 0 ] , [ . . . ] , [ 2 7 . 0 , 8 . 0 , 1 . 0 ] ]
# t y p e =’3 * var * f l o a t 3 2 ’>
# <Array [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , . . . ] , [ 0 . 0 , 1 2 . 0 , 0 . 0 ] ]
# t y p e =’3 * var * f l o a t 3 2 ’>

p r i n t ( j a x . g r ad ( np . sum ) ( ) ( p r i m a l s ) ( ) )
# [ [ 1 . 0 , 1 . 0 , 1 . 0 ] , [ ] , [ 1 . 0 , 1 . 0 ] ]

Listing 2.1: Awkward’s JAX backend in code.

The support for AD through JAX existed in Awkward Arrays, but it was buggy and untested
by physicists. This work aimed at polishing the existing JAX backend of Awkward Arrays and
extending it to the other IRIS-HEP libraries. This work extended the Awkward’s JAX backend to -

• work on any arbitrary combination of binary operations
• not clash with Numba functions
• allow differentiating through chained ufuncs,
• allow differentiating through ak.count and ak.mean

Therefore, as described in 2.2, Awkward users can now perform a much more comprehensive
set of differentiable operations on the data using Awkward’s JAX backend.

import j a x
import awkward as ak

ak . j a x . r e g i s t e r a n d c h e c k ( )

def f ( x ) :
re turn ak . mean ( ak . sum ( x ) * x )

a = ak . Array ( [ [ 1 . , 2 . , 3 . ] , [ ] , [ 5 . , 6 . ] ] , backend =” j a x ” )

f ( a ) , j a x . g r ad ( f ) ( a )
# Array ( 5 7 . 8 , d t y p e= f l o a t 3 2 ) ,
# <Array [ [ 6 . 8 , 6 . 8 , 6 . 8 ] , [ ] , [ 6 . 8 , 6 . 8 ] ]
# t y p e =’2 * var * f l o a t 3 2 ’>

Listing 2.2: Differentiating through a chain of ufuncs, Awkward’s mean function, and binary
operations using Awkward’s JAX backend.
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Furthermore, 2.3 shows how the JAX backend works well with Numba (Lam et al. 2015)
functions and decorators, causing no clashes between Awkward, JAX, and Numba.

import j a x
import awkward as ak
import numba

ak . j a x . r e g i s t e r a n d c h e c k ( )
b e h a v i o r = {}

i n p u t a r r = ak . Array ( [ 1 . 0 ] , backend =” j a x ” )

@numba . v e c t o r i z e (
[

numba . f l o a t 3 2 ( numba . f l o a t 3 2 , numba . f l o a t 3 2 ) ,
numba . f l o a t 6 4 ( numba . f l o a t 6 4 , numba . f l o a t 6 4 ) ,

]
)
def s o m e k e r n e l ( x , y ) :

re turn x * x + y * y

@ak . m i x i n c l a s s ( b e h a v i o r )
c l a s s SomeClass :

@proper ty
def s o m e k e r n e l ( s e l f ) :

re turn s o m e k e r n e l ( s e l f . x , s e l f . y )

ak . b e h a v i o r . u p d a t e ( b e h a v i o r )

a r r = ak . z i p (
{” x ” : i n p u t a r r , ” y ” : i n p u t a r r }
with name =” SomeClass ”

)

a r r . s o m e k e r n e l
# [ 2 . 0 ]
# −−−−−−−−−−−−−−−−−−−
# 1 * f l o a t 3 2

Listing 2.3: Awkward’s JAX backend does not clash with Numba decorators and functions.

All fixes and features to Awkward’s JAX backend have been released and thoroughly tested
within the repository’s continuous integration pipeline, significantly enhancing its completeness and
reliability for practical HEP analysis pipelines. To assess the readiness of Awkward’s JAX backend,
ongoing efforts aim to integrate automatic differentiation (AD) through Awkward in the Analysis
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Grand Challenge (AGC) (Held et al. 2022), resulting in a prototype that showcases the backend’s
capabilities.

2.4 Automatic differentiation and the Analysis Grand Challenge
The AGC is designed to perform fundamental HEP analysis by constructing comprehensive data
pipelines that demonstrate the capabilities of the IRIS-HEP ecosystem. This challenge facilitates the
integration of various components of the ecosystem into a single code pipeline, encompassing data
extraction, processing, modeling, and the final presentation of results. The inclusion of AD within
the AGC pipeline, enabled by the work undertaken in this thesis, marks a significant advancement
in the project’s ability to successfully adopt AD through Awkward’s JAX backend.

Neos (Simpson & Heinrich 2021) and Relaxed (Simpson 2023b) provide AD capabilities for
AGC’s modeling, inference, and plotting stages. However, the initial stages of data extraction and
manipulation, involving Awkward Arrays, Vector (fundamental Scikit-HEP libraries), and Coffea (a
columnar collider analysis framework), previously lacked AD support. This thesis has extended AD
implementation in Awkward to Coffea and Vector, thereby enabling the integration of AD across
the entire AGC pipeline. Examples illustrating the use of Awkward’s JAX backend with Coffea and
Vector are shown in 2.4 and 2.5, respectively.

import awkward as ak
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , NanoAODSchema

ak . j a x . r e g i s t e r a n d c h e c k ( )
NanoAODSchema . w a r n m i s s i n g c r o s s r e f s = F a l s e

t t b a r f i l e = ” h t t p s : / / g i t h u b . com / s c i k i t −hep / ”\
” s c i k i t −hep − t e s t d a t a / raw / main / s r c / s k h e p t e s t d a t a / d a t a / ”\
” nanoAOD 2015 CMS Open Data t tbar . r o o t ”

e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (
{ t t b a r f i l e : ” E ven t s ” } ,
s c h e m a c l a s s =NanoAODSchema

) . e v e n t s ( )
e v e n t s = ak . t o b a c k e n d ( e v e n t s . compute ( ) , ” j a x ” )

e v t f i l t e r = ak . t o b a c k e n d ( ak . num ( e v e n t s . J e t . p t ) >= 2 , ” j a x ” )
j e t s = e v e n t s . J e t [ e v t f i l t e r ]

( j e t s [ : , 0 ] + j e t s [ : , 1 ] ) . mass
# <Array [ 1 5 7 . 2 1 9 5 6 , 8 1 . 9 2 0 8 8 , . . . , 32 .363174 , 223 .94753]
# t y p e = ’140 * f l o a t 3 2 ’>

Listing 2.4: Coffea using Awkward’s JAX backend to support AD.
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import awkward as ak
import v e c t o r
import numpy as np
import u p r o o t

v e c t o r . r e g i s t e r a w k w a r d ( )
ak . j a x . r e g i s t e r a n d c h e c k ( )

t t b a r f i l e = ” h t t p s : / / g i t h u b . com / s c i k i t −hep / ”\
” s c i k i t −hep − t e s t d a t a / raw / main / s r c / s k h e p t e s t d a t a / d a t a / ”\
” nanoAOD 2015 CMS Open Data t tbar . r o o t ”

wi th u p r o o t . open ( t t b a r f i l e ) a s f :
a r r = f [ ” Ev en t s ” ] . a r r a y s (

[
” E l e c t r o n p t ” ,
” E l e c t r o n e t a ” ,
” E l e c t r o n p h i ” ,
” E l e c t r o n m a s s ” ,
” E l e c t r o n c h a r g e ”

]
)

px = a r r . E l e c t r o n p t * np . cos ( a r r . E l e c t r o n p h i )
py = a r r . E l e c t r o n p t * np . s i n ( a r r . E l e c t r o n p h i )
pz = a r r . E l e c t r o n p t * np . s i n h ( a r r . E l e c t r o n e t a )
E = np . s q r t ( a r r . E l e c t r o n m a s s **2 + px **2 + py **2 + pz **2)

e v t f i l t e r = ak . num ( a r r [ ” E l e c t r o n p t ” ] ) >= 2

e l s = ak . z i p (
{

” p t ” : a r r . E l e c t r o n p t ,
” e t a ” : a r r . E l e c t r o n e t a ,
” p h i ” : a r r . E l e c t r o n p h i ,
” en e r gy ” : E ,
” c h a r g e ” : a r r . E l e c t r o n c h a r g e

} ,
wi th name =”Momentum4D”

) [ e v t f i l t e r ]
e l s = ak . t o b a c k e n d ( e l s , ” j a x ” )

( e l s [ : , 0 ] + e l s [ : , 1 ] ) . mass
# <Array [ 8 6 . 9 0 3 5 3 4 , 9 7 . 6 0 4 1 2 , . . . , 62 .408997 , 5 0 . 4 9 0 5 8 ]
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# t y p e =’5 * f l o a t 3 2 ’>
Listing 2.5: Vector using Awkward’s JAX backend to support AD.

Consequently, this work has expedited the incorporation of AD into physicists’ analysis
pipelines, with a prototype implementation currently being developed at agc-autodiff (Held b).



Chapter 3

Unified Histogram Interface for variable axis
rebinning

Almost every analysis in HEP ends with a histogram, and the irregularities or spikes in these
plots help physicists identify particles or reconfirm measurements. Therefore, having fast, flexible,
easy-to-use, and easy-to-plot solutions for physicists in any data analysis pipeline becomes essential.
The Scikit-HEP ecosystem includes a modular mini-ecosystem of histogram libraries that are
interoperable with each other, as well as with ROOT and PyROOT (Dawe et al. 2015).

3.1 The histogramming mini-ecosystem
The Scikit-HEP ecosystem consists of scalable and efficient histogramming libraries either written
entirely in Python or providing Python bindings without compromising speed. This mini-ecosystem
follows the ideology of Histogram-as-an-Object to create powerful histogramming functionalities,
such as projects, advanced indexing, slicing, serialization, plotting, and much more. The ecosystem
consists of boost-histogram, a Python package that provides Python bindings for Boost.Histogram,
Hist, analyst-friendly front-end for boost-histogram, Histoprint (Koch et al. 2022), nicely displays
histograms in the terminal, UHI, a protocol providing static tools and documentation for the expected
behavior and interaction between histogram libraries, and dask-histogram, Dask support for boost-
histogram. Other libraries that have been deprecated include aghast (Scikit-Hep) and histbook
(Pivarski et al. 2018a).

Boost-histogram is one of the fastest histogramming libraries present in the HEP ecosystem
and forms the basis for all other Scikit-HEP histogramming libraries. The library treats histograms
as objects, and they are written internally in C++ to maintain speed. Moreover, the library is
interoperable with ROOT histograms, PyROOT histograms, as well as histograms written by Uproot.
Boost-histogram supports most of the UHI protocol, making it compatible with any library that
supports the same. The entire histogramming mini-ecosystem is described in 3.2.

17
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Figure 3.1: Scikit-HEP’s mini-ecosystem for Histograms-as-an-Object.

3.2 Unified Histogram Interface
UHI or Unified Histogram Interface specifies protocols for the current and future histogram libraries
of Scikit-HEP. These protocols allow the libraries and their histograms to interact with each other
and have a consistent API signature. UHI was primarily developed at Scikit-HEP under IRIS-HEP
but is now being adopted by other software frameworks, such as Coffea and ROOT.

The interface provides three major protocols for all the histogram libraries -

• UHI Indexing: powerful indexing system for histograms, designed to extend standard Array
indexing for Histogram operations.

• UHI Indexing+: set of extensions to the standard indexing that make it easier to use on the
command line.

• PlottableProtocol: minimal and complete set of requirements for a source library to produce
and a plotting library to consume to plot a histogram, including error bars.

3.3 The problem of non-uniform axis rebinning
Physicists often require rebinning or transforming the axes of a histogram in their analysis pipelines.
Rebinning includes changing an axis of a histogram and redistributing its content accordingly. This
transformation can either change the number of intervals, keeping them equidistant from each other
(going from a Regular axis to a Regular axis) or change the distance between two intervals (going
from a Regular axis to a Variable axis).

Boost-histogram supported rebinning a Regular axis to a Regular axis (uniform rebinning)
but lacked the support for rebinning a Regular axis to a Variable axis (non-uniform rebinning).
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For instance, consider the following Regular axis with ten bins placed at equal distances within the
interval [0,10] -

Figure 3.2: Regular axis with 10 bins.

A histogram with the axis described above can be constructed in boost-histogram using 3.1.

import b o o s t h i s t o g r a m as bh

h = bh . His togram ( bh . a x i s . R e g u l a r ( 1 0 , 0 , 1 ) )
Listing 3.1: Constructing a 1D histogram with Regular axis using boost-histogram.

The axis described in 3.1 can be rebinned by a factor of 0.5 to increase the number of bins
while keeping them at an equal distance within the same interval. Figure 3.3 shows how the final
result will look like.

Figure 3.3: Regular axis with 20 bins.

Following UHI indexing, the rebinning described above can be carried out in boost-histogram
using 3.2.

h [ : : r e b i n ( 0 . 5 ) ]
Listing 3.2: Rebinning the histogram with a factor of 0.5.

Now consider the variable axis in 3.4 with three bins spread unequally within the same interval,
[1,10].

Figure 3.4: Variable axis with 3 bins.

Boost-histogram limited the rebinning process to Regular-Regular rebinning; hence, the
histogram’s Regular axis could not be rebinned to the described Variable axis. Multiple physicists
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have requested this particular case of rebinning through different mediums, including (Chen),
(Schreiner a), (Feikert), and (Held a). The protocol for variable axis or non-uniform rebinning
is specified in the UHI, but its implementation needed to be added to boost-histogram. Adding
complete UHI support will enable boost-histogram to support non-uniform rebinning, allowing
physicists to use the efficient and UHI-compatible solution instead of writing their implementations

3.4 Implementing UHI for rebinning in boost-histogram
The implementation introduces a new Rebinner class, as highlighted in UHI, that is capable of
accepting a factor and a list of groups, along with it being scalable or extendable for the future.
An object of the Rebinner class can be passed in UHI-compatible indexing operations, making the
API similar to the existing rebin function. The Rebinner class is also exported out of the library
with an alias rebin to ensure backward compatibility. Listing 3.3 shows the implementation of
the UHI-compatible Rebinner class. The new groups argument specifies how the existing bins
should be grouped with each other. For instance, rebinning a histogram with axis Regular(10, 0,
1) using Rebinner(groups=[3, 2, 5]) will result in a new histogram with axis Variable([0,
0.3, 0.5, 1]).

c l a s s R e b i n n e r :
s l o t s = (

” f a c t o r ” ,
” g ro up s ” ,

)

def i n i t (
s e l f ,
f a c t o r : i n t | None = None ,
* ,
g r ou ps : Sequence [ i n t ] | None = None ,

) −> None :
i f not sum ( i i s None f o r i in [ f a c t o r , g r ou ps ] ) == 1 :

r a i s e V a l u e E r r o r ( )
s e l f . f a c t o r = f a c t o r
s e l f . g ro ups = g ro ups

def r e p r ( s e l f ) −> s t r :
r e p r s t r = f ”{ s e l f . c l a s s . n a m e }”
a r g s : d i c t [ s t r , i n t | Sequence [ i n t ] | None ] = {

” f a c t o r ” : s e l f . f a c t o r ,
” g ro up s ” : s e l f . g roups ,

}
f o r k , v in a r g s . i t e m s ( ) :

i f v i s not None :
r e t u r n s t r = f ”{ r e p r s t r } ({ k}={v } ) ”
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break
return r e t u r n s t r

def c a l l ( s e l f , a x i s : P l o t t a b l e A x i s ) −> i n t | Sequence [ i n t ] :
i f s e l f . f a c t o r i s not None :

re turn [ s e l f . f a c t o r ] * ( l e n ( a x i s ) / / s e l f . f a c t o r )

i f s e l f . g ro ups i s not None :
re turn s e l f . g ro ups

r a i s e N ot I mp l em e n t ed E r r o r ( a x i s )
Listing 3.3: A new Rebinner class following the UHI protocol.

Figure 3.5 outlines the code flow within boost-histogram after implementing variable axis
rebinning. It can be observed that the algorithm for non-uniform rebinning is executed in pure
Python instead of C++. At the moment, slicing and regular rebinning are written in C++ with
bindings present in Python, but the new non-uniform rebinning has been written in Python while
maintaining interoperability within the C++ and Python code blocks inside boost-histogram.

Figure 3.5: Implementation of UHI for non-uniform rebinning in boost-histogram.

Listing 3.4 describes the interface for rebinning a Regular axis to a Regular or a Variable
axis after completing the UHI implementation in boost-histogram.

import b o o s t h i s t o g r a m as bh

h = bh . His togram ( bh . a x i s . R e g u l a r ( 1 0 , 0 , 1 ) )

r e b i n = bh . t a g . R e b i n n e r ( f a c t o r = 0 . 5 )
h [ : : r e b i n ]

r e b i n = bh . t a g . R e b i n n e r ( g r ou ps = [1 , 2 , 3 ] )
h [ : : r e b i n ]
# His togram (
# V a r i a b l e ( [ 0 , 0 . 1 , 0 . 3 , 0 . 6 ] , me tada ta = . . . ) ,
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# s t o r a g e=Double ( )
# ) # Sum : 0 . 0

Listing 3.4: Rebinning the histogram with a factor of 0.5 and in groups of 1, 2, 3.

Similarly, 3.5 shows how one can rebin a particular axis of an ND (in this case N = 2) histogram
with the newly implemented UHI-compliant Rebinner class.

import b o o s t h i s t o g r a m as bh

h = bh . His togram (
bh . a x i s . R e g u l a r ( 2 0 , 1 , 3 ) , bh . a x i s . R e g u l a r ( 3 0 , 1 , 3 ) ,
bh . a x i s . R e g u l a r ( 4 0 , 1 , 3 )

)

s = bh . t a g . S l i c e r ( )

s [ : : bh . r e b i n ( g r ou ps = [1 , 2 , 3 ] ) ] } ] . axe s . s i z e
# ( 3 , 30 , 40)

h [
{

0 : s [ : : bh . r e b i n ( g r ou ps =[ 1 , 2 , 3 ] ) ] ,
2 : s [ : : bh . r e b i n ( g r ou ps =[ 1 , 2 , 3 ] ) ]

}
] . axe s [ 2 ] . edges
# a r r a y ( [ 1 . , 1 . 0 5 , 1 . 1 5 , 1 . 3 ] )

Listing 3.5: Rebinning a 2D histogram with the new API.

Boost-histogram is now equipped with the ability to perform non-uniform rebinning following
the standard UHI protocols. The work includes several tests that ensures the stability of the feature,
but it is still under review. The feature is scheduled to be released with the upcoming boost-histogram
release, making it available to the physicists before the end of this year.



Chapter 4

Computational upgrades to Vector

Performing vector algebra and physics on the collected HEP data is integral to HEP analysis
pipelines. Given that HEP data is not uniform, the vector algebra frameworks or libraries should
work readily on non-uniform or jagged data, allowing users to perform operations on an entire
jagged array in minimum passes. The vector algebra systems allow physicists to go for raw data
to some meaningful results, which can then be visualized using the histogramming libraries. The
Scikit-HEP ecosystem maintains its own library for performing vector algebra. This library is
compatible with the rest of the HEP ecosystem and is designed to be a general-purpose package
instead of a HEP-specific one.

4.1 A quick introduction to vector
Vector is Python library for creating and manipulating 2D, 3D, and Lorentz vectors, especially
arrays of vectors, to solve common physics problems in a NumPy-like way. Vector allows physicists
to perform physics on the data extracted by HEP experiments using backend libraries like Awkward
Arrays. Vectors may be represented in a variety of coordinate systems: Cartesian, cylindrical,
pseudorapidity, and any combination of these with time or proper time for Lorentz vectors. In all,
there are 12 coordinate systems: x− y vs ρ −ϕ in the azimuthal plane × z vs θ vs η longitudinally
× t vs τ temporally. Further, the names and conventions in Vector are uniform with ROOT’s
TLorentzVector and Math::LorentzVector, as well as Scikit-HEP/math, uproot-methods, hen-
ryiii/hepvector (Schreiner b), and coffea.nanoevents.methods.vector.

Vector implements a variety of backends for several purposes. Although Vector was written
with HEP in mind, it is a general-purpose library that can be used for any scientific or engineering
application. Before my work on Vector, it housed 3+2 backends, a pure Python object backend,
a NumPy backend, an Awkward backend, and implementations of the Object and the Awkward
backend in Numba for just-in-time compilable operations. Finally, Vector also provides a distinction
between geometrical vectors, which have a minimum of attribute and method names, and vectors
representing momentum, which have synonyms like pt = rho, energy = t, and mass = tau.

For instance, 4.1 shows how vectors of different backends can be constructed using the library.
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import v e c t o r ; import sympy ; import awkward as ak

# c r e a t i n g O b j e c t t y p e v e c t o r s
v e c t o r . MomentumObject3D ( px = 1 . 1 , py = 2 . 2 , pz = 3 . 3 )
v e c t o r . Vec to rObjec t4D ( x = 1 . 1 , y = 2 . 2 , e t a = 3 . 3 , t a u = 4 . 4 )

# c r e a t i n g SymPy t y p e v e c t o r s
x , y , px , py , pz , e t a , t a u = sympy . symbols (

’ x y px py pz e t a t a u ’ ,
r e a l =True ,

)
v e c t o r . MomentumSympy3D ( px=px , py=py , pz=pz )
v e c t o r . VectorSympy4D ( x=x , y=y , e t a = e t a , t a u = t a u )

# c r e a t i n g NumPy t y p e v e c t o r s
# NumPy− l i k e argument s ( l i t e r a l l y pas se d t h r o u g h t o NumPy )
v e c t o r . VectorNumpy2D (

[ ( 1 . 1 , 2 . 1 ) , ( 1 . 2 , 2 . 2 ) , ( 1 . 3 , 2 . 3 ) , ( 1 . 4 , 2 . 4 ) , ( 1 . 5 , 2 . 5 ) ] ,
d t y p e = [ ( ” x ” , f l o a t ) , ( ” y ” , f l o a t ) ] ,

)

# Pandas− l i k e arguments ( d i c t from names t o column a r r a y s )
v e c t o r . VectorNumpy2D (

{
” x ” : [ 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5 ] ,
” y ” : [ 2 . 1 , 2 . 2 , 2 . 3 , 2 . 4 , 2 . 5 ]

}
)

# c r e a t i n g Awkward t y p e v e c t o r s
v e c t o r . awk (

[
[

{” x ” : 1 , ” y ” : 1 . 1 , ” z ” : 0 . 1} ,
{” x ” : 2 , ” y ” : 2 . 2 , ” z ” : 0 . 2}

] ,
[{ ” x ” : 3 , ” y ” : 3 . 3 , ” z ” : 0 . 3 } ] ,

]
)

v e c t o r . r e g i s t e r a w k w a r d ( )

ak . Array (
[

[
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{” x ” : 1 , ” y ” : 1 . 1 , ” z ” : 0 . 1} ,
{” x ” : 2 , ” y ” : 2 . 2 , ” z ” : 0 . 2}

] ,
[{ ” x ” : 3 , ” y ” : 3 . 3 , ” z ” : 0 . 3 } ] ,

] ,
wi th name =” Vector3D ” ,

)
Listing 4.1: Vector constructors.

Similarly, 4.2 shows how one can manipulate or perform operations on the created vectors
using the methods and functions provided by the library.

# B r o a d c a s t s a r o t a t i o n a n g l e o f 0 . 1 t o bo th e l e m e n t s o f t h e
# f i r s t l i s t , 0 . 2 t o t h e empty l i s t , and 0 . 3 t o t h e o n l y
# e l e m e n t o f t h e l a s t l i s t .
v e c t o r . awk (

[
[

{” rho ” : 1 , ” p h i ” : 0 . 1} , {” rho ” : 2 , ” p h i ” : 0 . 2 } ] ,
[ ] ,
[{ ” rho ” : 3 , ” p h i ” : 0 . 3}

]
]

) . r o t a t e Z ( [ 0 . 1 , 0 . 2 , 0 . 3 ] )

# b i n a r y o p e r a t o r e q u i v a l e n t s
v e c t o r . o b j ( x =3 , y = 4 ) . s c a l e ( 1 0 )
v e c t o r . o b j ( x =1 , y =2) @ v e c t o r . o b j ( x =5 , y =5)

# d e l t a p h i i s a p l a n a r o p e r a t i o n ( d e f i n e d on t h e t r a n s v e r s e
# p l a n e )
v e c t o r . o b j ( rho =1 , p h i = 0 . 5 ) . d e l t a p h i (

v e c t o r . o b j ( rho =2 , p h i = 0 . 3 )
)

v e c t o r . o b j ( p t =1 , p h i = 1 . 3 , e t a = 2 ) . d e l t a R (
v e c t o r . o b j ( p t =2 , p h i = 0 . 3 , e t a =1)

)
Listing 4.2: Vector methods.
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4.2 The recent surge in Vector’s usage
Vector saw a sudden surge in its user base during my time working at CERN. This surge was
attributed to various factors joining together near the start of LHC’s run 3. The new upgrades
to transform LHC into HL-LHC have sparked several efforts to improve the existing software
infrastructure to handle a sudden and massive increase in HEP data. One such attempt, the 200
GBPS challenge (Bockelman et al.), outlines the requirements of the planned HL-LHC upgrades.
The challenge aims to operate at 25% of the HL-LHC scale, allowing physicists to read 200TB
of data in 30 minutes. This challenge and other LHC upgrades pushed several teams to Vector
requesting various performance optimizations, bug fixes, and feature requests.

Besides the standalone Vector issues, the library also required a sync with the other HEP
libraries in the ecosystem. For instance, given that physicists primarily rely on Vector’s awkward
backend, the new JAX and Dask (Dask Development Team 2016) backends of Awkward also
required propagation in Vector. The new Awkward backends were already used by physicists in
their analysis pipelines; hence, supporting them in Vector became a pressing issue. Furthermore,
Coffea developers decided to move away from their internal vector modules to Scikit-HEP/vector.
This internal switch of the vector algebra backend started a discussion about the mismatch in vector
algebra frameworks in the HEP ecosystem and the process of making everything uniform.

4.3 Preparing Vector for future LHC/HL-LHC runs
Vector saw 5 new releases within a short span of six months, making it one of the most active years
for the library. The releases included minor bug fixes, feature additions, and maintenance jobs, as
well as, major design changes, new backend support, and a better cohesion with the rest of the HEP
ecosystem.

The v1.2 release focused on specifying a uniform promotion and demotion scheme for the
geometric coordinates of a vector of any backend. This discussion was prompted by the start of the
migration of Coffea’s vector modules to Scikit-HEP/vector. Along with a new scheme, sub-classing
awkward mixins from Vector was made easier, bug-free, and more documented. Both these changes
were requested directly by physicists working at CERN experiments, enabling Vector to adapt better
to its intended use case. More specifically, the following non-maintenance and non-documentation
changes were released in Vector in v1.2 -

• fix: result of an infix operation should be demoted to the lowest possible dimension
• fix: all infix operations should not depend on the order of arguments
• fix: return the correct awkward record when performing an infix operation
• fix: respect user defined awkward mixin subclasses and projection classes

4.3 shows the v1.2 updates and fixes in action.
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import awkward as ak
import v e c t o r
from c o f f e a . n a n o e v e n t s . methods import v e c t o r

a = v e c t o r . z i p (
{

” x ” : [ 1 0 . 0 , 2 0 . 0 , 3 0 . 0 ] ,
” y ” : [ − 1 0 . 0 , 2 0 . 0 , 3 0 . 0 ] ,
” z ” : [ 5 . 0 , 1 0 . 0 , 1 5 . 0 ] ,
” t ” : [ 1 6 . 0 , 3 1 . 0 , 4 6 . 0 ] ,

} ,
)
b = v e c t o r . z i p (

{
” x ” : [ − 1 0 . 0 , 2 0 . 0 , − 3 0 . 0 ] ,
” y ” : [ − 1 0 . 0 , −20 .0 , 3 0 . 0 ] ,
” z ” : [ 5 . 0 , −10 .0 , 1 5 . 0 ] ,

} ,
)

{
” x ” : [ 0 . 0 , 4 0 . 0 , 0 . 0 ] ,
” y ” : [ 0 . 0 , 0 . 0 , 6 0 . 0 ] ,
” z ” : [ 1 0 . 0 , 0 . 0 , 3 0 . 0 ] ,
” t ” : [ 1 6 . 0 , 3 1 . 0 , 4 6 . 0 ] ,

} ,

# b e f o r e f i x
ak . p a r a m e t e r s ( a+b ) , ak . p a r a m e t e r s ( b+a )
# { ’ r e c o r d ’ : ’Momentum4D ’} , { ’ r e c o r d ’ : ’Momentum3D ’}

# a f t e r f i x
ak . p a r a m e t e r s ( a+b ) , ak . p a r a m e t e r s ( b+a )
# { ’ r e c o r d ’ : ’Momentum3D ’} , { ’ r e c o r d ’ : ’Momentum3D ’}

# b e f o r e f i x
a + b , b + a
{

” x ” : [ 0 . 0 , 4 0 . 0 , 0 . 0 ] ,
” y ” : [ 0 . 0 , 0 . 0 , 6 0 . 0 ] ,
” z ” : [ 1 0 . 0 , 0 . 0 , 3 0 . 0 ] ,
” t ” : [ 1 6 . 0 , 3 1 . 0 , 4 6 . 0 ] ,

} , {
” x ” : [ 0 . 0 , 4 0 . 0 , 0 . 0 ] ,
” y ” : [ 0 . 0 , 0 . 0 , 6 0 . 0 ] ,
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” z ” : [ 1 0 . 0 , 0 . 0 , 3 0 . 0 ] ,
}

# a f t e r f i x
a + b , b + a
{

” x ” : [ 0 . 0 , 4 0 . 0 , 0 . 0 ] ,
” y ” : [ 0 . 0 , 0 . 0 , 6 0 . 0 ] ,
” z ” : [ 1 0 . 0 , 0 . 0 , 3 0 . 0 ] ,

} , {
” x ” : [ 0 . 0 , 4 0 . 0 , 0 . 0 ] ,
” y ” : [ 0 . 0 , 0 . 0 , 6 0 . 0 ] ,
” z ” : [ 1 0 . 0 , 0 . 0 , 3 0 . 0 ] ,

}

a = ak . z i p (
{

” x ” : [ [ 1 , 2 ] , [ ] , [ 3 ] , [ 4 ] ] ,
” y ” : [ [ 5 , 6 ] , [ ] , [ 7 ] , [ 8 ] ] ,
” z ” : [ [ 9 , 1 0 ] , [ ] , [ 1 1 ] , [ 1 2 ] ] ,
” t ” : [ [ 5 0 , 5 1 ] , [ ] , [ 5 2 ] , [ 5 3 ] ] ,

} ,
wi th name =” L o r e n t z V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r

)

# b e f o r e f i x
a . t o V e c t o r 3 D ( )
# <MomentumArray3D [{ rho : 10 , p h i : 0 . 1 , . . . } , . . . , { . . . } ]
# t y p e =’3 * Momentum3 . . . ’ >

# a f t e r f i x
a . t o V e c t o r 3 D ( )
# <T h r e e V e c t o r A r r a y [ [{ x : 1 , y : 5 , z : 9} , { . . . } ] , . . . ]
# t y p e =’4 * var * ThreeV . . . ’ >

Listing 4.3: Fixes and features introduced in Vector v1.2.

Vector v1.3 saw multiple new features, including Dask (Dask-Contrib) support for parallel
computing, momentum coordinate support in coordinate transformation methods, and a new like
method to help physicists adapt to a new strict promotion and demotion scheme for geometric
coordinates. These updates were made to keep Vector compatible and in sync with the rest of the
HEP ecosystem and to address new issues reported by physicists. Vector v1.3 included the following
upgrades -

• feat: coordinate transformation functions with momentum names
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• feat: allow momentum coords in to VectorND methods + cleanup
• feat: like method for projecting vector into the coordinate space of another vector + better

type errors and hints
• feat: add support for dask-awkward arrays in Vector constructors
• feat: short names for to VectorND methods

4.4 shows the v1.3 updates and fixes in action.

import v e c t o r
import dask awkward as dak

# c o o r d i n a t e s u p p o r t i n momentum t r a n s f o r m a t i o n methods
vec = v e c t o r . MomentumObject2D ( p t =0 , p h i =1)
vec . t o p t p h i e t a ( )

# momentum c o o r d i n a t e s u p p o r t i n t r a n s f o r m a t i o n methods
vec . t o V e c t o r 3 D ( ) . t o V e c t o r 4 D (M=4)

# s h o r t a l i a s e s
vec . to 4D ( )

# Dask s u p p o r t
x = dak . from awkward (

ak . Array (
[{ ” x ” : 1 , ” y ” : 2} , {” x ” : 1 . 1 , ” y ” : 2 . 2 } ]

) ,
n p a r t i t i o n s =1

)
vec = v e c t o r . Array ( x )

# t h e new l i k e method
vec2 = v e c t o r . MomentumObject2D ( p t =0 , p h i =1 , e t a =3)
vec + vec2 . l i k e ( vec )

Listing 4.4: Fixes and features introduced in Vector v1.3.

v1.3.1 was a small release focusing on fixing issues with momentum vectors and supporting
the latest dask-awkward version for distributed computing. The release included the following
changes -

• feat: make momentum-ness infectious
• fix: support dask-awkward 2024.3.0
• fix: momentum coords should not be repeated with generic coords in subclasses

4.5 shows the v1.3.1 updates and fixes in action.
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import v e c t o r
import awkward as ak
from c o f f e e . n a n o e v e n t s . methods import v e c t o r

v1 = v e c t o r . z i p (
{

” px ” : [ 1 0 . 0 , 2 0 . 0 , 3 0 . 0 ] ,
” py ” : [ − 1 0 . 0 , 2 0 . 0 , 3 0 . 0 ] ,

} ,
)
v2 = v e c t o r . z i p (

{
” x ” : [ 1 0 . 0 , 2 0 . 0 , 3 0 . 0 ] ,
” y ” : [ − 1 0 . 0 , 2 0 . 0 , 3 0 . 0 ] ,
” z ” : [ 5 . 0 , 1 . 0 , 1 . 0 ] ,

} ,
)

# i n f e c t i o u s momentum−n e s s
# momentum + g e n e r i c = momentum
# 2D + 3D. l i k e (2D) = 2D
v1 + v2 . l i k e ( v1 )

a = ak . z i p (
{

” p t ” : [ [ 1 , 2 ] , [ ] , [ 3 ] , [ 4 ] ] ,
” e t a ” : [ [ 1 . 2 , 1 . 4 ] , [ ] , [ 1 . 6 ] , [ 3 . 4 ] ] ,
” p h i ” : [ [ 0 . 3 , 0 . 4 ] , [ ] , [ 0 . 5 ] , [ 0 . 6 ] ] ,
” en e r gy ” : [ [ 5 0 , 5 1 ] , [ ] , [ 5 2 ] , [ 6 0 ] ] ,

} ,
wi th name =” P t E t a P h i E L o r e n t z V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r ,
)

b = ak . z i p (
{

” rho ” : [ 1 0 . 0 , 2 0 . 0 , 3 0 . 0 ] ,
” t h e t a ” : [ 0 . 3 , 0 . 6 , 1 . 1 ] ,
” p h i ” : [ − 3 . 0 , 1 . 1 , 0 . 2 ] ,

} ,
wi th name =” S p h e r i c a l T h r e e V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r ,

)

# b e f o r e f i x
a . f i e l d s , a . l i k e ( b ) . f i e l d s
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# [ ’ p t ’ , ’ e t a ’ , ’ p h i ’ , ’ en e r g y ’ ] ,
# [ ’ rho ’ , ’ p h i ’ , ’ e t a ’ , ’ p t ’ , ’ en e r g y ’ ]

# a f t e r f i x
# [ ’ p t ’ , ’ e t a ’ , ’ p h i ’ , ’ en e r g y ’ ] , [ ’ rho ’ , ’ p h i ’ , ’ e t a ’ ]

Listing 4.5: Fixes and features introduced in Vector v1.3.1.

Vector v1.4 introduced SymPy as a new symbolic computation backend for the library. The
backend is discussed in great detail in Chapter 6. Other than the new backend, the release also
contained minor feature additions and bug fixes. More specifically, the release added the ability to
pass momentum coordinates in coordinate transformation methods and fixed the implementation of
squaring a vector.

• feat: a sympy backend
• feat: allow coord values in to ¡coord names¿ methods
• fix: call the square implementation for power 2 on object vectors
• fix: use negfactor in negfactor scale test

4.6 shows the v1.4 updates and fixes in action.

import v e c t o r

# b e f o r e f i x
v e c t o r . a r r a y (

{”E” : [ 1 ] , ” px ” : [ 1 ] , ” py ” : [ 1 ] , ” pz ” : [ 1 ]}
) ** 2
# [ −2.0]
v e c t o r . z i p (

{”E” : [ 1 ] , ” px ” : [ 1 ] , ” py ” : [ 1 ] , ” pz ” : [ 1 ] } ,
) ** 2
# ak . Array ( [ −2] )
v e c t o r . o b j ( E=1 , px =1 , py =1 , pz =1) ** 2
# 2.0000000000000004

# a f t e r f i x
v e c t o r . a r r a y (

{”E” : [ 1 ] , ” px ” : [ 1 ] , ” py ” : [ 1 ] , ” pz ” : [ 1 ]}
) ** 2
# [ −2.0]
v e c t o r . z i p (

{”E” : [ 1 ] , ” px ” : [ 1 ] , ” py ” : [ 1 ] , ” pz ” : [ 1 ] } ,
) ** 2
# ak . Array ( [ −2] )
v e c t o r . o b j ( E=1 , px =1 , py =1 , pz =1) ** 2
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# −2

# c o o r d i n a t e s u p p o r t i n momentum t r a n s f o r m a t i o n methods
vec = v e c t o r . MomentumObject2D ( p t =0 , p h i =1)
vec . t o p t p h i e t a ( e t a =2)

Listing 4.6: Fixes and features introduced in Vector v1.4.

v1.4.1 was another small release that included multiple bug fixes for the SymPy, NumPy, and
the Object backends of vector -

• fix: sympy backend on NumPy 2.0 (full NumPy 2.0 support)
• fix: add lower and upper bounds for deltaangle
• fix: maximum for SymPy backend is the identity function now
• fix: get coordinate classes to work for NumPy

4.7 shows the v1.4.1 updates and fixes in action.

import v e c t o r

v = v e c t o r . o b j ( x =1 , y =1 , z =1)

# b e f o r e f i x
v . d e l t a a n g l e ( v )
nan

# a f t e r f i x
v . d e l t a a n g l e ( v )
0 . 0

# c o o r d i n a t e c l a s s e s f o r NumPy v e c t o r s
vec4d = v e c t o r . VectorNumpy4D (

{
” x ” : [ 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5 ] ,
” y ” : [ 2 . 1 , 2 . 2 , 2 . 3 , 2 . 4 , 2 . 5 ] ,
” z ” : [ 3 . 1 , 3 . 2 , 3 . 3 , 3 . 4 , 3 . 5 ] ,
” t ” : [ 4 . 1 , 4 . 2 , 4 . 3 , 4 . 4 , 4 . 5 ] ,

}
)

vec4d . a z i m u t h a l , vec4d . l o n g i t u d i n a l , vec4d . t e m p o r a l
Listing 4.7: Fixes and features introduced in Vector v1.4.1.

Most of the updates made to Vector were computational, but several infrastructure, docu-
mentation, and maintenance changes were also added to the library. This thesis does not cover
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non-computational changes but these changes are available in Vector’s changelog. Moreover, all
the upgrades and fixes in Vector were created to meet the expectations of its rapidly growing users.
Vector is now much better prepared for the challenges posed by future upgrades to HEP experiments
at CERN.



Chapter 5

Coffea’s new backend for vector algebra

The existing Scikit-HEP ecosystem provides physicists with standalone libraries that can be used
together in a script to achieve analysis of HEP data. This modularity as a design choice allows users
to explore the libraries at a lower level, giving them complete control over their code. However, this
modularity also makes the syntax alien-like and confusing for beginners. Moreover, the fundamental
libraries of the ecosystem are as general as possible, allowing them to be used by physicists and other
STEM people. This generalization makes it hard to integrate HEP or CERN experiment-specific
schemas, vector classes, or data structures within the libraries. To combat this, Coffea provides
essential tools and wrappers for enabling not-too-alien syntax when running columnar collider HEP
analysis.

5.1 Coffea and its vector modules
Coffea makes use of Scikit-HEP libraries like Uproot and Awkward Arrays but also implements its
own histogramming, plotting, and vector functionalities. For instance, 5.1 outlines a short example
(Peruzzi et al. 2020) displaying how Coffea can be used in a fundamental HEP analysis. The
example uses Uproot and Awkward Arrays underneath to read, write, and manipulate HEP data, but
on the surface, it provides users with wrapper functionalities that can be extended to perform other
niche physics tasks. Furthermore, it is possible to scale a HEP analysis to a large multi-core server,
computing clusters, and super-computers with Coffea. The scaling is enabled via other IRIS-HEP
projects as well as the Dask backends of the array and histogram libraries of Scikit-HEP.

import awkward as ak
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , NanoAODSchema

NanoAODSchema . w a r n m i s s i n g c r o s s r e f s = F a l s e

fname = (
” h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / CoffeaTeam / c o f f e a / ” +
” m a s t e r / t e s t s / s amples / nano dy . r o o t ”

)
e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (

34
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{ fname : ” Ev en t s ” } ,
s c h e m a c l a s s =NanoAODSchema ,
m e t a d a t a ={” d a t a s e t ” : ” DYJets ” } ,

) . e v e n t s ( )

# compute t h e en er g y o f GenJet
e v e n t s . GenJe t . e ne r gy . compute ( )

# f i n d d i s t a n c e be tween l e a d i n g j e t and a l l e l e c t r o n s i n each e v e n t
dr = e v e n t s . J e t [ : , 0 ] . d e l t a r ( e v e n t s . E l e c t r o n )
d r . compute ( )

# f i n d minimum d i s t a n c e
ak . min ( dr , a x i s = 1 ) . compute ( )

# comput ing t h e p t c o o r d i n a t e o f Muons i n e v e n t s w i t h
# 1 or more Muons
e v e n t s . Muon [ ak . num ( e v e n t s . Muon) >0] . m a t c h e d j e t . p t . compute ( )

# choose e v e n t s w i t h e x a c t l y 2 muons
# sum along t h e a x i s and compute t h e mass
mmevents = e v e n t s [ ak . num ( e v e n t s . Muon ) == 2]
zmm = mmevents . Muon [ : , 0 ] + mmevents . Muon [ : , 1 ]
zmm. mass . compute ( )

Listing 5.1: A short analysis example using Coffea.

Coffea has deprecated its plotting and histogramming code since Scikit-HEP now consists
of HEP-specific plotting and histogramming libraries. Coffea now depends on these libraries and
extends their functionalities internally for the HEP data analysis use case.

5.2 Coffea’s vector to Scikit-HEP/vector
Coffea’s vector module pre-dates Scikit-HEP/vector, but now that Vector has achieved maturity, it
made sense to migrate Coffea’s internals to Scikit-HEP/vector. Scikit-HEP/vector is now much more
sophisticated and functional than Coffea’s vector sub-package, including support for third-party
libraries, such as JAX, Dask, and SymPy (Meurer et al. 2017). Although Scikit-HEP/vector does
not offer as many HEP functionalities as the current vector modules of Coffea, the basic HEP
functionalities offered by Vector can be extended by inheriting the VectorAwkward mixin classes.

The migration will ensure that the IRIS-HEP ecosystem does not provide users with repetitive
code or code that looks similar but performs differently. Additionally, the functionality and conven-
tional differences between Coffea vector modules and Scikit-HEP/vector should be minimized to
give users a single interface with the best of both worlds. Further, this will also unite physicists,
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given that some were currently using Scikit-HEP/vector in their data analysis pipeline, and the
remaining were using the internal vector modules of Coffea.

5.3 Implementing Scikit-HEP/vector as a backend for Coffee’s
vector classes

Bringing together both codebases to agree on a single convention started several discussions in both
Scikit-HEP and Coffea. These discussions formalized multiple changes in Vector and Awkward
Arrays such that adopting Vector as a vector algebra backend in Coffea can be as smooth as possible.
The niche HEP-specific functionalities were agreed to be kept in Coffea; hence, Coffea could
depend on Vector and extend its functionality by inheriting the Vector mixins or adding functions
that accept Vector objects as arguments. Ultimately, Coffea was scheduled to deprecate its vector
modules entirely and only depend on Vector to create and manipulate vectors.

The switch from Coffea’s internal vector modules to Scikit-HEP/vector was a drastic and
breaking change that was supposed to be rolled out in parts to let physicists migrate their data
pipelines. Therefore, in the initial phase, Coffea vector classes were made to inherit Scikit-
HEP/vector’s mixin classes, allowing developers to remove Coffea vector methods and depend on
the superclass’s methods. The inheritance approach kept the Coffea’s vector interface intact, giving
more time to the physicists. Figure 5.1 describes how the migration was carried out internally. The
migration also added a new feature in Awkward, the copy_behaviors function. The HEP-specific
vector classes in Coffea required registering Awkward ufuncs for each of them individually. This
process involved repetitive code, given that Coffea consists of multiple vector classes for multiple
use cases. The passing down of behavior and ufuncs to subclasses was also an open issue in
Awkward; hence, a new function was introduced to copy the ufuncs of a superclass to the subclass
entries in the behavior dictionary.

Figure 5.1: Switching Coffea’s vector algebra backend.

Examples 5.2 and 5.3 show how seamlessly one can switch from Coffea’s vector modules to
Scikit-HEP/vector without losing performance or any functionality.

import awkward as ak
from c o f f e a . n a n o e v e n t s . methods import v e c t o r
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , BaseSchema
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f i l e n a m e = ” f i l e : / / Run2012B DoubleMuParked . r o o t ”
e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (

{ f i l e n a m e : ” Ev en t s ” } ,
s t e p s p e r f i l e =2 000 ,
m e t a d a t a ={” d a t a s e t ” : ” DoubleMuon ” } ,
s c h e m a c l a s s =BaseSchema ,

) . e v e n t s ( )

muons = ak . z i p (
{

” p t ” : e v e n t s . Muon pt ,
” e t a ” : e v e n t s . Muon eta ,
” p h i ” : e v e n t s . Muon phi ,
” mass ” : e v e n t s . Muon mass ,

} ,
wi th name =” L o r e n t z V e c t o r ” ,
b e h a v i o r = v e c t o r . b e h a v i o r ,

)
Listing 5.2: Constructing a 4D momentum vector with Coffea.

import awkward as ak
import v e c t o r
from c o f f e a . n a n o e v e n t s import NanoEven t sFac to ry , BaseSchema

f i l e n a m e = ” f i l e : / / Run2012B DoubleMuParked . r o o t ”
e v e n t s = N ano Ev en t sFa c t o ry . f r o m r o o t (

{ f i l e n a m e : ” Ev en t s ” } ,
s t e p s p e r f i l e =2 000 ,
m e t a d a t a ={” d a t a s e t ” : ” DoubleMuon ” } ,
s c h e m a c l a s s =BaseSchema ,

) . e v e n t s ( )

muons = v e c t o r . z i p (
{

” p t ” : e v e n t s . Muon pt ,
” e t a ” : e v e n t s . Muon eta ,
” p h i ” : e v e n t s . Muon phi ,
” mass ” : e v e n t s . Muon mass ,

}
)

Listing 5.3: Creating a 4D momentum vector with Scikit-HEP/vector

The internal migration of Coffea’s vector algebra backend is complete but is still under review.
Coffea’s interface will not change after the internal migration, making the old Coffea code perfectly
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valid. After the internal switch, the next step will be to remove Coffea’s vector modules and redirect
physicists to use Scikit-HEP/vector in their data analysis pipelines.



Chapter 6

Vector’s symbolic backend for theoretical
computations

6.1 Symbolic programming and SymPy
Symbolic programming is a programming paradigm in which computer systems operate on formulas
and data containers without interacting with numerical data. This type of programming is used within
the theoretical Sciences and Mathematics to write proofs, solve equations, or even differentiate
expressions using pre-defined rules. Multiple programming languages, such as Lisp (Steele 1990)
and Mathematica (Inc.), are explicitly designed for symbolic programming. Other languages often
have third-party libraries or packages for symbolic programming, such as SymPy in Python and
Symbolics.jl (Gowda et al. 2022) in Julia.

Focusing on the Python ecosystem, SymPy is the most widely used computer algebra system
(CAS) by scientists and programmers. SymPy has a full suite of symbolic operations and is
maintained by a vast community. The operations and functionalities include symbolic calculus,
combinatorics, discrete mathematics, geometry, physics, statistics, and even printing mathematical
expressions in LATEX. Since SymPy is written in pure Python, is well maintained, and is widely used
in the Python ecosystem, it was the top choice for implementing a symbolic backend in Vector.

6.2 Need for a symbolic backend
The Scikit-HEP ecosystem is primarily meant to be used by experimental physicists to manipulate
and perform physics on numerical data. Theoretical physicists are largely aloof from Scikit-HEP
and other experimental Physics frameworks. Moreover, only MC generators like Pythia (Sjöstrand
et al. 2015) are routinely used by both experimental and theoretical physicists.

A new SymPy backend in Vector (Pivarski & Chopra 2024a) (Pivarski & Chopra 2024b) will
allow symbolic computations on HEP vectors. Along with experimental physicists using Vector for
numerical computations, the SymPy backend will enable theoretical physicists to utilize the library
for symbolic computations. Since the SymPy vector classes and their momentum equivalents will
operate on SymPy expressions, all of the standard SymPy methods and functions will work on the
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vectors, vector coordinates, and the results of operations carried out on vectors. Moreover, Vector’s
SymPy backend will create a stronger connection between software used by experimentalists and
software used by theorists.

Furthermore, Vector’s compute functions were written to operate only on data containers
and not the numerical values of the data containers. The symbolic behavior of Vector’s compute
functions is tested in the continuous integration pipeline using uncompyle6. Given that uncompyle6
is supported till Python 3.8, which is reaching its end of life soon, finding other methods to test
the specialized behavior of compute functions became important. The tests of the SymPy backend
will allow vector developers to remove the uncompyle6 dependency because running the compute
functions on SymPy vectors will ensure that they are operating only on the data containers.

6.3 Implementing a symbolic backend in Vector
Vector was designed from the ground-up to have multiple computational backends. The duck typing
of compute functions allows them to be shared within the backends without introducing repetitive
code. Implementing the SymPy backend included adding coordinate and vector classes capable of
constructing vectors using SymPy’s data containers and wrapping compute function results as a
SymPy expression.

Figure 6.1 shows how the SymPy backend and other Vector backends interact with the comput-
ing functions. Each backend has its own coordinate and vector classes that can accept numerical
(for the case of Object/NumPy/Awkward backend) or symbolic (for the case of SymPy backend)
arguments. The classes, as well as the method written directly under them, are compatible with the
respective backend libraries. The Object backend uses NumPy to perform all the arithmetic and
Awkward functions work on NumPy vectors without any performance degradation.

Figure 6.1: Implementation of Vector’s SymPy backend.
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Finally, all the compute functions valid on the dimension of the constructed vector work with
all the backends. At the moment, the compute functions switch between backend libraries using a
shim layer. This shim layer is not required for the Object, NumPy, and Awkward backends because
NumPy works with all of them. On the other hand, due to different naming conventions between
SymPy and NumPy, the NumPy functions are mapped to the respective SymPy functions in the
shim layer and are flown down to the compute functions. The results from these compute functions
are wrapped with values or appropriate data structures in the vector classes. This wrapped result can
then be used in any of the functions provided by the backend libraries, making a strong cohesion
between Vector backends and the backend libraries.

Consider the example 6.1 performing deltaR operation on two Object type 4D Momentum
vectors.

import v e c t o r

muon 1 obj = v e c t o r . MomentumObject4D ( px =1 , py =2 , pz =3 , E=10)
muon 2 obj = v e c t o r . MomentumObject4D ( px =2 , py =3 , pz =4 , E=11)

muon 1 obj . d e l t a R ( muon 2 obj )
# 0.19249147660266414

Listing 6.1: Performing deltaR on Object vectors.

The exact same operation can be carried out using the SymPy backend with an almost identical
syntax. 6.2 shows how SymPy symbols can be passed into MomentumSymPy constructors as
arguments just like numerical values are passed into MomentumObject constructors. The deltaR
operation on SymPy vector returns a SymPy expression instead of a numerical value. The obtained
SymPy expression is compatible with every SymPy method and function; hence, one can substitute
(subs) and evaluate (evalf) the resultant expression to validate the theoretical expression.

import v e c t o r ; import sympy

px 1 , py 1 , pz 1 , E 1 = sympy . symbols (
” px 1 py 1 pz 1 E 1 ” , r e a l =True

)
px 2 , py 2 , pz 2 , E 2 = sympy . symbols (

” px 2 py 2 pz 2 E 2 ” , r e a l =True
)

muon 1 sympy = v e c t o r . MomentumSympy4D (
px=px 1 , py=py 1 , pz=pz 1 , E=E 1

)
muon 2 sympy = v e c t o r . MomentumSympy4D (

px=px 2 , py=py 2 , pz=pz 2 , E=E 2
)
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muon 1 sympy . d e l t a R ( muon 2 sympy )
# s q r t ( ( Mod ( a tan2 ( py 1 , px 1 ) − a tan2 ( py 2 , px 2 ) + pi , 2* p i ) −
# p i )**2 + ( a s i n h ( p z 1 / s q r t ( px 1 **2 + py 1 * * 2 ) )
# − a s i n h ( p z 2 / s q r t ( px 2 **2 + py 2 * * 2 ) ) ) * * 2 )

# t a k e t h e v a l u e s from o b j e c t t y p e v e c t o r s
muon 1 sympy . d e l t a R ( muon 2 sympy ) . subs (

{
px 1 : muon 1 obj . px ,
py 1 : muon 1 obj . py ,
pz 1 : muon 1 obj . pz ,
E 1 : muon 1 obj . E ,
px 2 : muon 2 obj . px ,
py 2 : muon 2 obj . py ,
pz 2 : muon 2 obj . pz ,
E 2 : muon 2 obj . E ,

}
) . e v a l f ( )
# 0.192491476602664

Listing 6.2: Performing deltaR on SymPy vectors.

The SymPy backend has two significant and intentional caveats. SymPy internally uses mpmath
to perform complex floating-point arithmetic, which has led to minor disagreements between the
results obtained through the Object and the SymPy backend. This disagreement can be minimized
by specifying more decimal points in the precision. Further, operations on SymPy vectors are only
100% compatible with numeric vectors (Python, NumPy, and Awkward backends) if the vectors are
positive time-like, that is, if -

t2 > x2 + y2 + z2

The space-like and negative time-like cases have different sign conventions; hence, to make
SymPy’s simplification work, these sign conventions are ignored in the shim layer. Given that most
of the HEP analysis deals with positive time-like vectors, this caveat does not hinder the ability to
use the Vector’s SymPy backend in theoretical calculations.



Chapter 7

Bringing histograms to GPUs:
cuda-histogram

Awkward Arrays provides NumPy-like functionality for jagged data produced by HEP exper-
iments. The library intertwines naturally with several fundamental scientific computing Python
libraries, allowing physicists to utilize the entire ecosystem to its full potential. The support for
third-party libraries enables physicists to perform various tasks on their analysis pipelines, includ-
ing, but not limited to, differentiation (JAX), parallelization (Dask), and just-in-time compilation
(Numba). There are ongoing efforts to make Awkward Arrays compatible with CUDA, allowing
physicists to accelerate their analysis using GPUs. The recent work of putting Awkward Arrays on
GPUs has garnered interest from high energy physicists, especially Coffea developers, to accelerate
the analysis framework for future HL-LHC runs. Though the work on Awkward Arrays is being
carried out, more pieces are required to perform a complete analysis of HEP data on GPUs. One of
the major pieces is the ability to generate and manipulate histograms on CUDA, allowing physicists
to perform a complete analysis leveraging the entire Scikit-HEP ecosystem on GPUs.

Before this thesis, Coffea had a prototype implementation of histograms on CUDA, but the
implementation was specific to Coffea. This thesis aimed to generalize and broaden the existing
implementation of histograms on CUDA by developing a UHI-compliant stand-alone library –
cuda-histogram. Furthermore, Coffea has been trying to incorporate broader libraries to replace its
internal, more focused, modules. One such instance is the ongoing migration of Coffea’s vector
classes to Scikit-HEP/vector. This project will tie up with keeping the cuda-histogram functionality
outside of Coffea for a broader audience.

At the time of writing this thesis, the cuda-histogram project is still in progress and under
scrutiny. In the upcoming months, the project will be refined, made UHI-compatible, transformed
into a standalone Scikit-HEP package, go through hyperoptimization routines, and finally used
within Coffea as a dependency.
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