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1 Introduction
The space sector has recently witnessed a boom in CubeSats [1], a class of nano-satellite measuring 10 cm3

(1U) or a multiple of it. The easy accessibility and cost-effectiveness of CubeSats has enabled people from
academia, industry, and other sectors to build and launch satellites as secondary payloads on a bigger launch
vehicle, facilitating scientific research in space. EPFL Spacecraft Team (EST)’s flagship mission, Constellation
of High-Energy Swiss Satellites (CHESS), aims to launch two 3U CubeSats on two distinct orbits (circular and
elliptical) around Earth to conduct spectroscopic analysis of Earth’s exospheric composition.

In orbit, a CubeSat’s operations are governed by its Flight Software (FS). This software is responsible
for interfacing with all hardware sub-systems, managing communications with ground stations, processing
telecommands and telemetry, and ensuring overall system robustness through Fault Detection, Isolation, and
Recovery (FDIR). The On-Board Autonomy of FS is responsible for maintaining nominal operations in space
without ground interventions, making automated decisions, and stabilizing the satellite in the occurrence of
an unexpected faults. This project aims to set up the FS for CHESS, and designs and implements the On-
Board Autonomy (EventAction) for the CHESS mission. The FS implemented as part of this project will be
deployed on Pathfinder 0, the first fully-integrated test satellite planned to launch in Low Earth Orbit (LEO) in
2027. Concretely, this project contributes the following to EST’s CHESS mission:

• Set up the initial infrastructure and design of CHESS FS.
• Implementation of EventAction as an F` [2] component.
• Finite State Machine (FSM) governing the satellite’s global operating modes and managing transitions

between them.
• A design for communication between EventAction and different FS sub-system managers via Triggers,

created by a continuous stream of state-changing worthy information.
• A computational algorithm to process incoming triggers, make meaningful decisions, and execute ap-

propriate responses. These include transitioning to a global SAFE state or its sub-states, and initiating
stabilization procedures pending ground intervention.

CHESS FS is being written in F` v4, an open-source framework by National Aeronautics and Space
(NASA)’s Jet Propulsion Laboratory for the development and deployment of space applications. Subsequently,
EventAction has been written using F`, with its high level design specified in the F Prime Prime (fpp) [3]
modelling language and the implementation in C++. The final FS image is supposed to run on an in-house
On-Board Computer (OBC) with a custom Linux distribution.

Adhering to the standards laid out by NASA, each functionality in CHESS FS is accompanied with unit
tests and documentation, with an eventual plan of writing integrations tests (and building a testing platform
to simulate the space environment). All code changes are tested via an automated Continuous Integration
(CI) pipeline, which executes test suites, formatting checks, and static code analysis. Furthermore, every
addition requires a formal peer review by another member of the EST before merging into the main codebase.
The design and implementation process also prioritizes compliance with standards laid out by the European
Cooperation for Space Standardization (ECSS) [4]. Moreover, the designs and implementations carried out in
this project have been reviewed by an European Space Agency (ESA) flight software expert (through the ESA
Fly Your Satellite (FYS) program) and by a committee of experts (during EST’s System Review in December
2025).

This report discusses the design and implementation of the FS and EventAction, and lists out the future
work required on the same to meet the 2027 launch deadline.

2 Background

2.1 CHESS Mission
Given the lack of real-time and accessible measurements from Earth’s upper atmosphere, EST’s CHESS pri-
marily aims to conduct spectrometric analysis in LEO to study the composition of Earth’s upper atmosphere.
The mission will put two CubeSats, Pathfinder 1 and Pathfinder 2, in a circular and elliptical orbit around the
Earth to carry out this objective. These CubeSats will produce high-resolution measurements of atmospheric
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composition and precise positioning and timing information. To carry out the scientific objective, the Cube-
Sats will deploy two payloads, a CubeSat-type Time-Of-Flight (CubeSatTOF) mass spectrometer to carry out
the spectrometric analysis and a Global Navigation Satellite System (GNSS) to collect positioning and timing
information.

Figure 1 shows a schematic representation of the payloads and all other sub-systems of the satellites. Along
with the payloads, the CubeSats will carry five other essential sub-systems:

• Altitude Determination and Control System (ADCS) consisting of sensors and actuators to move and
align the satellite using attitude determination algorithms.
• Electrical Power System (EPS) consisting of solar panels and secondary batteries to manage and dis-

tribute power.
• On-Board Computer (OBC) consisting of two sets of central processing units, memory, etc, to run the

FS, which would be cross-compiled for a custom Yocto [5] based Linux distribution.
• Ultra High Frequency (UHF) antenna to transmit telemetry and receive commands to and from the

ground.
• X-band antenna to transmit the scientific data collected by the payloads to the ground.

Figure 1: Structural view of Pathfinder 0 [6].

However, as a concrete test, the association has decided to include a Pathfinder 0 satellite in the mission,
which is set to be launched in early 2027. Pathfinder 0 will act the first fully-integrated test for the CHESS
mission. Instead of having the initially planned CubeSatTOF, Pathfinder 0 will include a Novoviz Single-
Photon Avalanche Diode (SPAD) camera to click pictures of Earth. Given that SPAD does not require a huge
bandwidth to transmit the data to Earth, the satellite will include an S-band antenna instead of the X-band
antenna. Finally, the Twocan board tested on EST’s recent In-Orbit Demonstrator (IOD) mission [7] will serve
as its OBC, providing us with a confirmation if this iteration of OBC is ready for space.

After launch, Pathfinder 0 will follow a defined Concept of Operations (CONOPS), performing its scientific
objectives, maintaining nominal operations without much ground intervention, performing FDIR, and then
eventually deorbiting (after 5 years of launch).

2.2 Flight Software for CubeSats
The FS of a CubeSat maintains the state of the satellite in the space, acting as a central node for communication
and decision handling. The FS is broadly responsible for [8]:

• Communicating with each hardware sub-system.
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• Communicating with the ground, in the form of received commands, and transmitted telemetry and
events.
• Handling and storing scientific data, until it is transmitted to the ground.
• Maintaining nominal operation mode, and switching between different global satellite modes if and

when required.
• Formalizing CONOPS in a machine-readable format and defining the sequence of operations for each

satellite mode.
• Handling FDIR and stabilizing the satellite in the case of an unforseen fault.

To achieve these objectives, the FS is required to be modular, scalable, reliable, and re-usable [9–11]. For
instance, after the lifecycle of Pathfinder 0, the FS components (especially the software abstraction over each
sub-system - the sub-system managers) will be re-used for the subsequent missions. Moreover, these sub-
system managers should also be easily scalable, such that if a sub-system is upgraded in the future iterations,
the FS can be updated without much trouble.

Similarly, FS is required to be deterministic and reliable in every possible condition encountered in the
space. The deterministic algorithm can very well lead the satellite to a SAFE state and wait for an intervention
from the ground, but it should not create an infinite loop of state changes. F` enlists the following recommen-
dations to respect these functional requirements, making the FS reliable and deterministic:

• No recursion; No GOTOs.
• Loops must have a fixed-bound.
• No dynamic memory allocation after initialization.
• Use FW_ASSERT to validate function inputs and computation.
• Restrict data to the smallest necessary scope.
• Check function return values or explicit discard with (void).
• Avoid the preprocessor and especially complex uses of the preprocessor.
• Prefer Fw and Os implementations. e.g. use FW_ASSERT and Os::Mutex over cassert and std::mutex.
• Compile without warnings, errors, and static analysis failures (e.g. pass continuous integration).
• Do not use Os::Task::delay to synchronize between threads.
• Explicit enumeration values should be specified for all values or none at all.

Furthermore, the standard embedded programming recommendations such as:

• No exceptions, code must compile with -fno-exceptions.
• No uses of templates nor the Standard Template Library.
• No typeid or run-time type information.
• Use namespaces to reduce naming conflicts.
• Use std::numeric_limits for mix/max values. Template implementations of std::numeric_limits

have been approved.
• Use static_cast, reinterpret_cast, and const_cast instead of dangerous C-style and dynamic_cast

casting.
• Limited use of multiple inheritance and virtual base classes is permitted.

also apply to the development of FS for space.

Architecturally, the FS for CubeSats is usually developed with a layered architecture [12], going all the
way from drivers for the hardware to high level data handling and decision making (usually mission-specific).
This layered architecture also allows the software to be modular and easily extendable, such that the entire
software is not rewritten if a piece of underlying hardware is added, removed, or updated [13, 14]. Finally, the
FS for CubeSats usually follow an architecture akin to the master-slave architecture, wherein the On-Board
Autonomy makes critical decisions based on inputs from each hardware sub-system (and subsequently the sub-
system managers), each sub-system manager aligns its mode of operation according to the the global satellite
mode set by the On-Board Autonomy, and each sub-system only communicates exclusively with the On-Board
Autonomy [15].

In case of a software failure, it should be possible to beam up a patched version of the software and reboot
the OBC with the latest executable, making FS the only part of the satellite that can be patched once the
satellite is in space. Thus, writing FS for space, or specifically, CubeSats, requires one to follow strict coding
conventions, and choosing the right framework and programming paradigm for the FS makes it easier to not
deviate from these strict requirements.
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2.3 F`
F` is a C++ framework written by NASA for development and deployment of space applications. F` empha-
sizes Component-based development, isolating each flight software functionality into a stand-alone compo-
nent. These components can communicate with the other components only through dedicated F` Ports. The
framework additionally provides other interfaces for communication, safe and threaded data structures for em-
bedded systems, a modelling language (fpp) to automatically generate a code template from systems design,
pre-built widely-used components, and other utilities for testing, documentation, and ground software.

Formally, F` provides a user with the following building blocks to write software for space (or, in theory,
software for any embedded system):

• Component: A stand-alone encapsulation of a particular software functionality. A component further
contains the ports, commands, events, and telemetries it requires.
• Port: An interface to communicate between to components.
• Command: An action, usually sent by the ground, for a component to perform. Commands can also

sent or scheduled by internal F` components.
• Event: An action performed by a component which is received by the ground in the form of logs.
• Telemetry: Housekeeping data sent to the ground providing the active state of a component.
• Deployment: A single build or executable of the FS. Each deployment consists of a topology defining

the FS.
• Topology: A network of instances of the defined components (with thread priorities and addresses).

In addition to the high-level categorization, each of these building blocks can be further classified. For
instance, the ports are further classified as synchronous, asynchronous, and guarded based on the type of their
invocations, or input and output based on their direction of communication. Similarly, components can further
be classified as active, passive, or queued based on their threading and queuing behavior.

Hence, F` is a robust framework with a track record of writing maintainable and modular software for space,
such as the Mars Helicopter (Ingenuity) [16]. Furthermore, given that the framework was built specifically for
CubeSats, small spacecrafts, and instruments, F` emerged as the perfect choice to write CHESS FS.

3 Design and Implementation of CHESS Flight Software
Following the design principles of a typical FS mentioned in 2.2, CHESS FS is designed to be modular,
scalable, reliable, and re-usable. The whole software is built on a layered architecture, making it modular,
scalable, and re-usable, where each driver talks to the actual hardware, the sub-system managers translate high-
level commands into driver messages, and the high-level decision making and data handling algorithms only
operate on the software level. Each sub-system manager has an internal FSM to manage its operations, aligning
with the global operating mode set by EventAction’s FSM. Hence, the FS is designed to manage multiple
operating modes, divided into nominal and safe modes. The global satellite operating mode transitions are
handled by EventAction’s FSM, reacting to triggers (3.1.3), system events, and external commands. Figure
2 shows the high-level layered architecture of the CHESS FS. An instance of each of the F` components is
instantiated at runtime, forming a network of components (topology) within the given F` deployment.

The FS undergoes multiple levels of testing, making it reliable and deterministic. Each version of the flight
software is inspected using static analysis tools to detect potential errors. Clang-Tidy [17] is used to lint CXX
and HXX files (with configuration adopted from the F` repository) and Ruff [18] to lint Python files. Standard
pre-commit hooks [19] are also configured to lint other file formats, such as .txt, .yaml, and .md. Similarly,
ClangFormat [20], Ruff, and other standard pre-commit hooks are used to format every file to standardize
the codebase. Beyond the static analysis layer of testing, component-level testing is performed by the means
of unit tests. Along every F´ component in the flight software comes an associated software design document
which defines a set of requirements for the component. As many of these requirements as possible are verified
by one or more unit tests, written before or together with the component to ensure maximal coverage early.
These unit tests help ensure that components properly implement their requirements and behave as expected
in isolation. All of these checks run automatically in a CI pipeline on GitHub on every pull request and push
to the default branch (main). The final layer of testing being developed by the EST is Numerical Environment
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Figure 2: High level overview of the flight software architecture [6].

for Software Testing (NEST), a custom testing platform. NEST will simulate space-like conditions to perform
the final integration tests for the FS.

The FS will be cross-compiled for the Yocto based Linux distribution running on OBC. The Linux dis-
tribution will provide a base software layer to deploy, configure, and update the FS whenever required. The
distribution houses a bash script (daemon) that handles booting, monitoring, and updating the FS. In the case
where a bug or a fault is detected in the FS, the ground operator can beam a new executable of the software to
the satellite, triggering the daemon to update the FS version, making FS the only piece of the satellite which
can potentially be fixed once the satellite is in space.

Finally, the FS works on system ticks produced by F`’s BlockDriver and RateGroupDriver. The FS
components are invoked via F` ActiveRateGroup at regular time intervals. Depending on the operating mode
and responses received by the drivers, the high-level components emit telemetry, events, or values capable of
causing triggers (to EventAction). Section 3.1 describes the On-Board Autonomy (EventAction, the FSM,
and FDIR) in detail.

3.1 On-Board Autonomy
3.1.1 EventAction Component

EventAction is the brain of FS. Written as an F` component, with the system design in fpp and the imple-
mentation in C++, EventAction acts as the central node for decision making and managing satellite operating
modes. EventAction is composed of ports to communicate with other components, events and telemetries to
transmit to the ground, and an FSM (3.1.2) to govern the global operating modes of the satellite.

EventAction has been designed to never take control of, or individually command, a sub-system, instead
it only broadcasts the global operating mode of the satellite and lets the individual sub-system managers align
their internal state machines with this mode. That is, if the satellite is tumbling uncontrollably, EventAction
does not take control of ADCS. It simply passes this information (by broadcasting the global operating mode
using the sendMode port) to every sub-system manager and waits for the tumbling rate value (3.1.3) from
ADCSManager to go below the threshold value in time Tmax (and then accordingly changes the global operating
mode, or goes to SAFE_COM (3.1.4) state if the issue is not resolved in time Tmax). Listing 1 shows an example of
this broadcasting behavior, as implemented for the GO_TO_CHARGE_MODE command in the component. While
this approach increases the number of ports and connections, it ensures explicitness in operations.

Listing 1: Mode broadcast example.
void E v e n t A c t i o n : : GO TO CHARGE MODE cmdHandler ( FwOpcodeType opCode ,

U32 cmdSeq ) {
/ / send s i g n a l t o go t o charge mode
t h i s −>e v e n t A c t i o n S M s e n d S i g n a l c h a r g e ( ) ;
/ / send e v e n t t o ground
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t h i s −>log ACTIVITY HI MODE CHANGE ( EventAct ionModes : : CHARGE) ;
/ / b r o a d c a s t t h e mode t o e v e r y component
t h i s −>sendMode out ( 0 , EventAct ionModes : : CHARGE) ;
/ / f i n i s h w i t h OK r e s p o n s e
t h i s −>cmdResponse out ( opCode , cmdSeq , Fw : : CmdResponse : : OK) ;

}

Furthermore, EventAction will usually not (except for the SAFE_REBOOT state) wait for the sub-system
managers to do their tasks. It is expected that the tasks will be performed as required. However, the SAFE state
(3.1.4) sequences have a fall-back if the essential tasks (such as, charging in SAFE_CHARGE state or detumbling
in SAFE_DETUMBLE state) are not completed by a sub-system manager in time Tmax, which when crossed puts
the CubeSat in SAFE_COM state and waits for the ground to intervene.

Tables 1, 2, and 3 list every custom port, command, and event defined in EventAction. The ports and com-
mands are implemented in the class itself, but the events are automatically generated by F` in EventAction’s
super class EventActionComponentBase. Appendix B displays the complete class diagram of EventAction,
including the members generated by F`.

Name Description

adcsTriggerIn Receives triggers from ADCS sub-system manager
uhfTriggerIn Receives triggers from UHF sub-system manager
gnssTriggerIn Receives triggers from GNSS sub-system manager
novovizTriggerIn Receives triggers from SPAD sub-system manager
epsTriggerIn Receives triggers from EPS sub-system manager
obcTriggerIn Receives triggers from OBC sub-system manager
recvFatal Receives FATAL event announcements
sendMode Sends current operating mode to other components

Table 1: Ports implemented in EventAction and their description.

Name Description

GO_TO_CHARGE_MODE Command to transition to CHARGE state
GO_TO_SAFE_MODE Command to transition to SAFE state
GO_TO_DOWNLINK_MODE Command to transition to DOWNLINK state
GO_TO_MEASURE_MODE Command to transition to MEASURE state
GO_TO_COM_MODE Command to transition to COM state
GO_TO_SAFE_COM_SUBMODE Command to transition to SAFE_COM sub-state
GO_TO_SAFE_CHARGE_SUBMODE Command to transition to SAFE_CHARGE sub-state
GO_TO_SAFE_DETUMBLE_SUBMODE Command to transition to SAFE_DETUMBLE sub-state
GO_TO_SAFE_REBOOT_SUBMODE Command to transition to SAFE_REBOOT sub-state

Table 2: Commands implemented in EventAction and their description.

Name Description

MODE_CHANGE Event for logging the new global operating mode
TRIGGER_RECV Event for logging the trigger received

Table 3: Events implemented in EventAction and their description.

3.1.2 State Machine

EventAction houses an FSM to manage the satellite’s global operating mode, forming a bijective relation
between the FSM’s states and the satellite’s global operating modes. Each of these states is tailored to the
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mission and has a specific purpose, with the satellite frequently jumping between these states when it enters
different parts of the orbit (except for the LEOP and SAFE states). Formally, the FSM (and subsequently, the
satellite) has the following states:

• LEOP: manages early operations, and transitions the satellite from deployment to nominal operations.
• CHARGE: charges the secondary batteries.
• MEASURE: activates the payloads and collects data.
• COM: enables communication with the ground segment.
• DOWNLINK: transmits the collected scientific data to ground.
• SAFE: tries to stabilize the satellite until ground intervention.

– SAFE_BASE: the default SAFE sub-state.
– SAFE_COM: prioritizes establishing communication with the ground.
– SAFE_CHARGE: prioritizes charging secondary batteries.
– SAFE_DETUMBLE: prioritizes detumbling the satellite.
– SAFE_REBOOT: reboots the key sub-systems periodically until ground intervention.

Out of all the states, the LEOP and SAFE states are not entered as part of nominal operations. The FSM
always starts in the LEOP state, and switches to the CHARGE state once all the preliminary operations (such as
detumbling and deploying solar panels and UHF antenna) have been completed. The SAFE state can only be
entered if a trigger (3.1.3) is detected by EventAction. The SAFE state sequence automatically decides which
sub-state to enter, based on the trigger detected. Figure 3 shows a state diagram for the FSM, including which
sub-systems are active during a particular state.

Figure 3: Global operating modes for Pathfinder 0 [6].

State transitions in the FSM are managed by signals, essentially C++ methods, which when called signals
the FSM to switch to a particular state. Besides signals, the FSM is also equipped with actions, which are
performed before entering or exiting a particular state. As an example, appendix C shows the system design
of SAFE state in the FSM implemented using fpp, including the sub-states, actions, signals, and the control
flow. Furthermore, appendix B displays all the class members of EventAction, including the FSM and the
functionality related to it.
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3.1.3 Fault Detection

The FDIR and decision making mechanism of EventAction revolves around custom triggers. Triggers are
events that switch the global satellite operating mode to SAFE state, such as BatteryLevel < Bcrit. At the
beginning of this project, triggers were designed to be state-changing requests sent by a sub-system manager
to EventAction. This micro-architecture like design allowed quick, contention-free, state changes, but the-
oretically gave sub-system managers the power to change states. For instance, EPSManager would send a
request to EventAction to switch the global operating mode to SAFE if battery level drops below Bcrit, and
the EventAction will complete its request. However, as the project evolved, the design changed to a mono-
lithic one, wherein, sub-system managers only send values worthy of generating triggers to EventAction and
EventAction takes into consideration all such values and executes a centralized decision making algorithm.

The values worthy of generating a trigger are akin to internal telemetry for EventAction. Each sub-
system manager will continuously communicate these values to EventAction. EventAction will regularly
check if these values are below or above a certain threshold (generating a trigger) and act on it. Referring
to the EPS example again: EPSManager will regularly transmit the BatteryLevel value to EventAction via
the epsTriggerIn port. EventAction will regularly check this value and enter the SAFE_CHARGE sub-state
(after processing all other trigger information in memory) if the value goes below Bcrit. With this design, the
sub-system managers are not capable of, but they play an important role in, changing the global operating
mode of satellite.

Figure 4: Triggers for Pathfinder 0.

Furthermore, issues that affect only one sub-system and that can be handled by a sub-system manager
internally are not escalated to EventActions as triggers. These issues should instead be handled internally
by the sub-system manager. Figure 5 shows the final selected triggers for Pathfinder 0. The crit or max values
in the diagram correspond to the thresholds critical enough to enter the SAFE state. The design also does not
include the event of UHF and solar panels not opening during LEOP as triggers (as this can only occur in
the LEOP state and will never occur again). This fault is instead handled internally in EventAction’s LEOP
state. Similarly, heating up the CubeSat is not a SAFE state task, instead it is a hardware task automatically
triggered when CubeSat’s temperature goes below a threshold value. On the other hand, cooling down the
CubeSat is automatically handled by the SAFE state sequence (all non-essential sub-systems are shut down at
the beginning of SAFE state, automatically bringing down CubeSat’s internal temperature).

3.1.4 Fault Handling and Recovery

The spacecraft enters the SAFE state once a trigger is detected. The rationale of Fault Handling and Recovery
(and subsequently, the SAFE state) is to put the satellite in a stabilized mode to give as much time as possible
to the ground operators to understand and fix the issue. The SAFE state employs a deterministic algorithm to
stabilize the satellite with the help of its sub-states and priorities for each trigger. The state also prioritizes
protecting valuable payloads, and the FSMs of the payload managers turns them off as soon as the spacecraft
enters the SAFE state. Figure 6 shows the final iteration (v4) of the SAFE state sequence design, with higher
priority triggers handled first. Appendix A further shows the second iteration of the design (v1), with v0
omitted because of its size. With each iteration, the sequence design was made more modular and isolated;
hence, the final design only includes the SAFE state sequence for EventAction with the expectation that each
sub-system manager will define their own SAFE state sequence.

The SAFE state is divided into five sub-states: SAFE_BASE (a software abstraction over the SAFE state),
SAFE_CHARGE, SAFE_COM, SAFE_DETUMBLE, and SAFE_REBOOT, encapsulating every SAFE state functionality
and allowing ground operators to activate any SAFE state function via ground. Every SAFE sub-state is designed
to either go back to the SAFE state (to process the remaining/newly detected triggers) or to the SAFE_COM
state, which can only be exited via a command from ground; hence, SAFE state can only be terminated by a
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Figure 5: SAFE state (SAFE BASE sub-state) sequence.

(a) SAFE CHARGE sub-state sequence. (b) SAFE COM sub-state sequence.

(c) SAFE DETUMBLE sub-state sequence. (d) SAFE REBOOT sub-state sequence.

Figure 6: SAFE sub-state sequences.

ground operator. Furthermore, EventAction automatically enters the SAFE_COM state if an essential SAFE
state operation (such as charging in SAFE_CHARGE sub-state) is not performed satisfactorily in time Tmax and
waits for the ground to intervene.

The SAFE_CHARGE and SAFE_DETUMBLE states constantly try to charge the battery or detumble the satellite
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until the BatteryLevel > Bsu f f or TumbleRate < Tsu f f , respectively (where Bsu f f and Tsu f f are the thresh-
old values sufficient enough to exit the sub-state). Out of the four sub-states, SAFE_COM and SAFE_REBOOT
sub-states play an important role in mitigating extreme risks. Once in the SAFE_COM state, the FSM fre-
quently scans for any newly detected triggers, and does not react on any unresolved triggers detected in the
past, preventing an infinite loop of jumping states and making the algorithm deterministic. The SAFE_COM
state also monitors for commands from the ground, and switches to the CHARGE state only when the ground
commands it to do so. The SAFE_REBOOT state can only be entered via the SAFE_COM state, and the switch be-
tween the SAFE_COM and SAFE_REBOOT states is designed to be repetitive. In the SAFE_REBOOT state, ADCS,
UHF, and OBC are rebooted i f f there is no communication with ground (NoComm days) for > NCmax days.
Given that the switch to SAFE_REBOOT is repetitive, these reboots are repetitive, that is, these sub-systems
are rebooted after every NCmax days until communication with ground is established. As the last resort, the
SAFE_REBOOT state reboots EPS, and subsequently, the whole satellite if no communication is established with
the ground (NoCommCumulative days) after NCmax2 days (a multiple of NCmax). Again, given the repetitive
nature of the activation of SAFE_REBOOT state, the EPS reboot is also periodic; hence, the whole satellite is re-
booted every NCmax2 days until communication with the ground is established. Following the ECSS standards,
UHF (and communication with ground) is never explicitly disabled, except for when EPS is rebooted via the
SAFE_REBOOT, rebooting the entire satellite including the UHF antenna.

Therefore, the SAFE state is designed from ground-up to be deterministic and reliable, positioning the
satellite in a stable mode and giving the ground operators time to deploy a fix. The state strictly adheres to the
ECSS standards and is also easily extendable to incorporate more stabilizing functionalities. The state can last
indefinitely, provided that EPS is not damaged. The ground segment will instruct the CubeSat to exit the SAFE
state only once the triggers are resolved and the CubeSat can safely switch back to nominal operations.

4 Results
This project successfully established the foundational infrastructure and implemented key components of the
CHESS FS. Formally, the project set up the initial infrastructure and overall design of the CHESS FS, adhering
to widely-adopted space standards and architectural principles. Further, the project designed and implemented
the brain of the FS, EventAction, the core decision-making component. EventAction internally imple-
ments an FSM to govern the satellite’s global operational modes, managing transitions between nominal states
and various SAFE sub-states. Along with the state machine, FDIR has also been formalized in this project,
consisting of a continuous stream of state-changing information (causing triggers), and a deterministic and
reliable computational algorithm for the SAFE state. In summary, this project delivers the initial design and
implementation of the CHESS FS and the On-Board Autonomy, providing the critical foundation necessary
for maintaining nominal operations in space with minimal ground intervention.

5 Future Work
Even though the design of EventAction is complete, the implementation is only halfway there, as the nominal
mode sequences are dependent on each hardware sub-system of CHESS, which are not completely ready as of
now. Similarly, the design for FDIR is complete, but the implementation is not yet complete, and is dependent
on the individual hardware sub-systems activated during the process. Particularly, the trigger causing values,
timeout values, and thresholds to recover from the SAFE state needs to be defined by each sub-system. Further,
given that ECSS standards require the spacecraft telemetry and commands to be readable by each component,
it should not be required to centralize command rerouting and trigger calculation in EventAction. Instead,
the commands can directly go to a specific component and a wrapper component (consisting of TlmChan,
F`’s internal component to pass telemetry between components, and other custom code) can be developed
to process trigger causing values and raise a trigger to the EventAction, which will then only deal with
fault handling and recovery, and not the detection. Utmost care was taken to align this work with the ECSS
standards, but comprehensive integration testing (through NEST) is required to find any loopholes, especially
in the implemented decision algorithm. Finally, the initial design and implementation of CHESS FS and
EventAction was accelerated this semester through this project, but the design and implementation of each
sub-system manager and the corresponding hardware drivers is still incomplete and is required for the 2027
launch deadline.
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Appendix A SAFE state sequence version 1

Figure 7: SAFE state sequence v1.

11



Appendix B EventAction class diagram

Figure 8: EventAction class diagram.
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Appendix C Implementation of SAFE state’s system design

Listing 2: Implementation of SAFE state’s system design in fpp.
s i g n a l s a f e
a c t i o n e n t e r S a f e
a c t i o n e x i t S a f e

s i g n a l s a f e B a s e
a c t i o n e n t e r S a f e B a s e
a c t i o n e x i t S a f e B a s e

s i g n a l s a f e D e t u m b l e
a c t i o n e n t e r S a f e D e t u m b l e
a c t i o n e x i t S a f e D e t u m b l e

s i g n a l s a f e C h a r g e
a c t i o n e n t e r S a f e C h a r g e
a c t i o n e x i t S a f e C h a r g e

s i g n a l safeCom
a c t i o n en te rSafeCom
a c t i o n ex i tSafeCom

s i g n a l s a f e R e b o o t
a c t i o n e n t e r S a f e R e b o o t
a c t i o n e x i t S a f e R e b o o t

s t a t e SAFE {

i n i t i a l e n t e r SAFE BASE

s t a t e SAFE BASE {

on s a f e C h a r g e do { e n t e r S a f e C h a r g e } e n t e r SAFE . SAFE CHARGE
on safeCom do { en te rSafeCom } e n t e r SAFE . SAFE COM
on s a f e D e t u m b l e do { e n t e r S a f e D e t u m b l e } e n t e r SAFE . SAFE DETUMBLE
e x i t do { e x i t S a f e B a s e }

}

s t a t e SAFE DETUMBLE {

on s a f e C h a r g e do { e n t e r S a f e C h a r g e } e n t e r SAFE . SAFE CHARGE
on safeCom do { en te rSafeCom } e n t e r SAFE . SAFE COM
on s a f e B a s e do { e n t e r S a f e B a s e } e n t e r SAFE . SAFE BASE
e x i t do { e x i t S a f e D e t u m b l e }

}

s t a t e SAFE CHARGE {

on s a f e D e t u m b l e do { e n t e r S a f e D e t u m b l e } e n t e r SAFE . SAFE DETUMBLE
on safeCom do { en te rSafeCom } e n t e r SAFE . SAFE COM
on s a f e B a s e do { e n t e r S a f e B a s e } e n t e r SAFE . SAFE BASE
e x i t do { e x i t S a f e C h a r g e }

}

s t a t e SAFE COM {

on s a f e C h a r g e do { e n t e r S a f e C h a r g e } e n t e r SAFE . SAFE CHARGE
on s a f e D e t u m b l e do { e n t e r S a f e D e t u m b l e } e n t e r SAFE . SAFE DETUMBLE
on s a f e R e b o o t do { e n t e r S a f e R e b o o t } e n t e r SAFE . SAFE REBOOT
on s a f e B a s e do { e n t e r S a f e B a s e } e n t e r SAFE . SAFE BASE
on c h a r g e i f c h a r g e I s S a f e do { e n t e r C h a r g e } e n t e r CHARGE
e x i t do { ex i tSafeCom }
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}

s t a t e SAFE REBOOT {

on s a f e B a s e do { e n t e r S a f e B a s e } e n t e r SAFE . SAFE BASE
e x i t do { e x i t S a f e R e b o o t }

}

}

14



References
[1] Jamie Chin, Roland Coelho, Justin Foley, Alicia Johnstone, Ryan Nugent, Dave Pignatelli, Savannah

Pignatelli, Nikolaus Powell, and Jordi Puig-Suari. Cubesat 101: Basic concepts and processes for first-
time cubesat developers. Technical report, California Polytechnic State University, San Luis Obispo (Cal
Poly) CubeSat Systems Engineer Lab, 2017.

[2] The F´ Framework Team. F´: A Flight-Proven, Multi-Platform, Open-Source Flight Software Frame-
work. URL https://github.com/nasa/fprime.

[3] Robert L Bocchino, Jeffrey W. Levison, and Michael D. Starch. Fpp: A modeling language for f prime. In
2022 IEEE Aerospace Conference (AERO), pages 1–15, 2022. doi: 10.1109/AERO53065.2022.9843754.

[4] ECSS-E-ST-70-11C Rev.1 Working Group. ECSS-E-ST-70-11C Rev.1: Space engineering and Space
segment operability. Technical report, European Space Agency, 15 October 2025.

[5] The Linux Foundation. The Yocto Project: An open source collaboration project that helps de-
velopers create custom Linux-based systems regardless of the hardware architecture. URL https:
//git.yoctoproject.org.

[6] EPFL Spacecraft Team. CHESS Pathfinder 0 Satellite Project File. Technical report, École Polytechnique
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