Towards handling 10Pb/s of data through Machine
Learning at CERN’s Large Hadron Collider

Francesco Derme, francesco.derme@epfl.ch, 394806
Pietro Fumagalli, pietro.fumagalli@epfl.ch, 414991
Saransh Chopra, saransh.chopra@epfl.ch, 407908

In collaboration with the Machine Learning For Experimental Physics team at CERN
Lorenzo Moneta, lorenzo.moneta@cern.ch
Sanjiban Sengupta, sanjiban.sengupta@cern.ch

Abstract—High Energy Physics (HEP) experiments, such as the
Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN), produce petabytes of data every
second. Physicists are now actively integrating Machine Learning
techniques in various parts of the pipeline to collect and analyze
this data. Given the massive scale of these experiments, and
the upcoming High Luminosity upgrade to LHC (HL-LHC), it’s
becoming increasingly important to accelerate the inference of
ML models beyond the supported capabilities of present day
frameworks. The System for Optimized Fast Inference code
Emit (SOFIE), is a C++ library developed by CERN for fast
ML inference. SOFIE allows parsing a trained ML model into
a highly-optimized C++ function, making it possible to run
the inference process with minimal overhead and dependencies.
CERN’s Machine Learning For Experimental Physics team has
recently been experimenting with adding heterogeneous comput-
ing support to SOFIE using the Alpaka library, allowing it to
run inference on any device (including GPUs) while maintaining
a single codebase. This paper extends SOFIE’s Alpaka backend
with four new kernels, and adds related tests and documentation,
allowing SOFIE to support inference on GPUs for more ML
models. It further benchmarks the newly added operators against
PyTorch implementations to showcase an increase in performance
and the readiness to be used at scale.

I. INTRODUCTION

With the High Luminosity upgrade to CERN’s LHC, starting
2030, physicists are expecting to generate HEP data at the rate
of 5 or 10 Petabytes/sec [Girl6] [Thel7a]. This represents
an order-of-magnitude increase compared to current LHC
rates, with the detectors effectively becoming 5,000-megapixel
cameras taking 40 million pictures every second. The process
of collecting and analyzing this data is increasingly based on
ML techniques, and this is true throughout a variety of HEP
experiments and tasks at CERN, as shown by the following
examples.

1) LHC uses physics-informed algorithms to scan the
stream of data in real-time, throwing away 98% of it
instantly and keeping only interesting physics events
[Thel7b] [Gov+22]. The systems that make this real-
time selection are called Triggers. Physicists are now
adopting ML techniques at the Level 1 Trigger (L1T)
and the High Level Trigger (HLT) in conjunction with

traditional algorithms in a bid to find events not pre-
dicted by standard physics models.

2) The Compact Muon Solenoid (CMS) experiment uses
an advanced neural network model (ParticleNet) for
heavy flavor jet tagging and jet mass regression [QG20]
[The21] where jet tagging is the task of identifying the
type of particle that started a jet and mass regression is
the task of calculating the weight of that parent particle.

3) The ATLAS experiment uses a custom transformer
(GN2) for jet tagging [The25] [The23b].

4) Variational autoencoders and transformer-based diffu-
sion models (such as CaloDiT) are used to generate fast
calorimeter shower simulations [The23a] [McK+25].

5) To complement fast simulations, physicists are exper-
imenting with clustering and dimensionality reduction
models to reduce the size of the data used for training
ML models [Fol+24] [RG22].

6) At the offline event analysis side, physicists are adopting
gradient-based techniques to optimize parameters and
experimenting with treating the whole analysis pipeline
as a single, optimizable, ML model [CD19] [SH22].

While training these ML models is well-supported, integrating
them at an experiment’s runtime requires inference engines
that are both extremely fast and hardware-agnostic. SOFIE
[MLS+24] [LSM25] is a C++ library that promises to bridge
this gap. It generates highly optimized CPU code from trained
models (in ONNX format or trained in Keras or PyTorch) for
fast and lightweight inference with the BLAS [Bla+02] library
as the only external dependency, allowing HEP experiments to
integrate complex trained models without the computational
overhead of heavy ML frameworks. However, SOFIE currently
lacks a unified solution for the diverse landscape of GPU
accelerators (NVIDIA, AMD, Intel) used in modern HEP
computing centers. Extending SOFIE to support these acceler-
ators traditionally requires writing separate backends for each
architecture, but this approach scales badly, leading to code
duplication and high maintenance costs. Hence, the Machine
Learning For Experimental Physics team has recently started
experimenting with Alpaka, a C++ library for parallel kernel

acceleration on heterogeneous platforms. Alpaka decouples the
algorithmic logic from the hardware layer, enabling a “write
once, run anywhere” approach for parallel kernels. From a
technical viewpoint, this project extends SOFIE’s experimental
Alpaka backend with more kernels (Trivial, Transpose,
Concat, Where, and Topk), allowing it to run fast inference
for a more diverse set of ML models. From a scientific
viewpoint, this project has the objective of benchmarking this
approach against a state-of-the-art ML framework (PyTorch),
with the ultimate goal of evaluating whether it’s fit to handle
the challenges and opportunities posed by HL-LHC.

II. BACKGROUND

SOFIE’s workflow, as illustrated in Figure [1], can be divided
into 3 parts

1) Model translation: a trained model from any supported
framework (Keras, PyTorch, or the standard ONNX
format) is first read by the Parser.

2) Intermediate representation (IR): the Parser converts
the complex model structure into a simplified, uniform
representation called the RModel.

3) Code generation: the Inference Code Generator takes
the RModel and writes the final, highly-optimized, C++
header file with the inference function along with a
.DAT file containing the weights of the model.

Listing [1] showcases an example of the C++ header file (for
our implementation of Transpose kernel) generated when
an ONNX model composed only of a Transpose layer is passed
to SOFIE. The efficacy of this approach has been extensively
validated by benchmarking SOFIE-generated CPU code for
the ATLAS GN2 model (a Transformer-based architecture for
jet tagging) to establish a baseline against ONNX Runtime
[LSM25]. Figure [2a] demonstrates that SOFIE consistently
minimizes resource usage, requiring significantly less memory
than ONNX Runtime (=130 MB vs 175 MB for 1000 inputs)
due to its static memory allocation strategy. Figure [2b]
presents how latency scales for the same model. While ONNX
Runtime currently exhibits lower latency for large batch sizes
on the CPU due to a more mature multi-threading codebase,
SOFIE’s performance is heavily dependent on the underlying
mathematical backend. The configuration using Blis and VDT
(Vectorized Math Library) provides a measurable speedup
over the standard BLAS implementation. It is important to
note that HEP trigger systems often prioritize single-event
latency optimization (batch size of 1). In this regime, SOFIE’s
lightweight design eliminates the overhead of a heavy runtime
engine and can already keep up with ONNX Runtime. Build-
ing on this high-performance foundation, our project extends
the heterogeneous computing support of SOFIE.

III. METHODOLOGY

In what follows we give a detailed description of the imple-
mented kernels. Note that accelerator refers to the GPU device
on which the parallel code generated by Alpaka is executed.

1) Trivial: receives as input a tensor with an arbitrary
number of dimensions and returns it as output. This
requires passing to the accelerator the input tensor and
its shape. In the context of this project, this is only useful
as a benchmarking baseline.

2) Transpose: receives as input a tensor with an arbitrary
number of dimensions and swaps two or more dimen-
sions returning a tensor which might be of different size.
This requires passing to the accelerator the input tensor
as well as desired input and output shapes and the swaps
to be performed.

3) Where: receives as input 3 tensors with an arbitrary
number of dimensions and performs a ternary operator
between two of them, using the third as the truth value.
This requires passing to the accelerator the input tensors
and the input shape.

4) Concat: receives as input an arbitrary number of
tensors with an arbitrary number of dimensions and
concatenates them along a specified axis. The tensors’
dimensions along the concatenation axis must match.
This requires passing to the accelerator the input tensors
and input shapes, along with the concatenation axis.

5) Topk: receives as input a tensor with an arbitrary
number of dimensions and finds the biggest k elements
along a specified axis. If k is bigger than the number
of items in the chosen axis, the output is padded with a
user-defined value. This kernel was templated to accept
k as well as a Maxk as template parameters, so that
it can decide to use global memory or GPU registers
based on the comparison between the two, allowing for
flexibility without sacrificing performance. This requires
passing to the accelerator the input tensor and the axis
along which the selection shall be made.

IV. SINGLE-KERNEL TESTS & BENCHMARKS

Validating the newly implemented parallel kernels requires
verifying code correctness and reliability through unit testing,
as well as benchmarking performance against established
inference engines. The tests were conducted on the three
hardware configurations listed in Table [I] in order to assess
performance across different backends.

1) The Dell Latitude is a standard x86_64 host using
CpuTbbBlocks backend.

2) The MacBook Air M3 validates the portability to
ARMG64 architectures using the same CPU backend.

3) The Lenovo Legion utilizes an NVIDIA GPU with the
GpuCudaRt backend to demonstrate the performance
gains of accelerator offloading (256 threads per block
and variable number of blocks).

A. Unit Testing

Single-kernel tests generate the appropriate number of
randomly-sized tensors of random values for each kernel (or
accept a specified tensor size as command-line-argument),

reporting a correctness verdict and the execution time. Cor-
rectness is evaluated by comparing the kernel’s output to that
of a separate, serial implementation that runs on the CPU alone
and is guaranteed to be correct because it has been extensively
tested. For CPUs, after compiling with the make or make
test commands, tests can be found and run from the bin
folder. For GPUs, after compiling with the cmake -S.
-Bbuild && cmake —--build build command, tests
can be found and run from the build folder. We recommend
using the run.py script described in the next section to
handle tests automatically. Testing our implementations several
times on every listed architecture with inputs of varying sizes
revealed no implementation flaws, consistently producing the
expected outputs.

B. Performance Benchmarks

To evaluate the performance and portability of the proposed
Alpaka kernels, we developed a Python automation script,
run.py, which benchmarks the C++ implementations against
optimized PyTorch operations. The script manages the com-
pilation pipeline and executes the kernels across a range of
input sizes (N € {128,156, 512, 1024, 2048, 4096, 8192}),
measuring both kernel execution time and total runtime which
includes memory broadcasting overhead from host to device
and back. To ensure a fair comparison, the script executes
equivalent PyTorch tensor operations on the same accelerator
on which Alpaka implementations run. To quantify efficiency,
we analyze the Effective Memory Bandwidth, which is defined
as the total volume of bytes read and written by the accelerator
divided by the kernel execution time. This metric isolates
memory throughput from computational logic, indicating how
effectively the kernel saturates the hardware’s memory bus.
Additionally, we report the Speedup, calculated as the ratio of
PyTorch to Alpaka execution times, where a Speedup greater
than 1 denotes that the proposed Alpaka kernel outperforms
the vendor-optimized baseline. The results for all the imple-
mented kernels are listed in Tables [II][ILI][IV][V][VI], these
were obtained by averaging 10 runs of the run.py script.
The results are too many to be commented individually, but we
highlight general trends. On CPU the Alpaka implementations
generally outperform PyTorch on smaller-sized inputs and
become slower as the problem size increases, except for trivial
and fopk kernels which manage good Speedup even an higher
sizes. On GPU on the other hand, Alpaka consistently out-
performs PyTorch, except for the trivial kernel, demonstrating
how powerful this approach can be (keep in mind that CPU
and GPU code are compiled from the same Alpaka source
code).

V. CONCLUSION

The integration of Machine Learning into HL-LHC is not
merely a performance upgrade, it is a fundamental requirement
to sustain the physics potential of the experiment in the High-
Luminosity era. With data rates approaching 10 Pb/s, the
ability to filter and analyze events with high precision and

low latency is paramount. This project has demonstrated that
the SOFIE library, augmented by the Alpaka backend, offers
a viable path toward hardware-agnostic inference without
compromising on performance. By implementing and bench-
marking the Trivial, Transpose, Concat, Where, and
Topk kernels, we validated a “write-once, run-anywhere” ap-
proach that successfully decouples the algorithmic logic from
the underlying hardware. Our extensive benchmarks across
x86_64 CPUs, ARM64 Apple Silicon, and NVIDIA GPUs
reveal distinct performance profiles. On GPUs, the Alpaka
backend consistently outperforms the optimized PyTorch base-
line, achieving massive speedups and confirming the efficiency
of the generated CUDA kernels. On CPUs, while PyTorch
has the upper hand in high-throughput, large-batch scenarios
due to a more-mature multi-threading codebase, our Alpaka
implementations demonstrate superior performance in low-
latency, small-batch regimes. This is a critical finding, as the
Level-1 and High-Level Triggers often operate on single events
or small batches where minimizing overhead is more critical
than raw throughput. Ultimately, this work confirms that a
unified C++ codebase can effectively target heterogeneous ar-
chitectures. By reducing the maintenance burden of supporting
multiple backends and providing competitive inference speeds,
the SOFIE-Alpaka integration is well-positioned to support the
computationally intensive demands of HL-LHC.

VI. FUTURE WORK

Most operators, even though written, tested, and benchmarked,
have still not been ported to SOFIE. The Transpose! and
Concat? operators have been ported to SOFIE’s repository
as two stand-alone branches, but the pull requests are yet to
be reviewed by the supervisors and might require additional
work to be merged in. Additionally, the kernels must be exper-
imented on with different numbers of threads and blocks on
both GPUs and CPUs, to find optimal parameters. Along with
these operators, we also experimented with implementing the
ScatterElements, Conv, BatchNorm, Reduce, and
LayerNorm operators, but they either require implementing
device-agnostic reduction operations or device-agnostic BLAS
operations, both of which do not have a complete solution as
of now. Alpaka does not provide device-agnostic reduction
operations, hence, these will have to be added as a stand-
alone code in the future. sofieBLAS [MBS+24] attempts to
provide users with device-agnostic BLAS operations, but it is
still a fairly new library, supporting only limited operations
(which are not enough for the operators mentioned above).
Finally, once all the above operators are ported to SOFIE,
we will be able to generate inference functions for ATLAS
GN2 and CMS ParticleNet targeting CUDA, allowing us to
benchmark the inference functions and hopefully accelerating
their performance by a significant magnitude.

Thttps://github.com/ML4EP/SOFIE/pull/7
Zhttps://github.com/ML4EP/SOFIE/pull/8

VII. ETHICAL RISK ASSESSMENT

Making use of the Digital Ethics Canvas [Har+25] to guide
our risk assessment, we found sustainability to be the critical
section. In the context of very large experiments like those
carried out at CERN, evaluating energy consumption and
environmental impact is non-negotiable. While ML models
are a viable (and possibly even necessary) strategy to keep the
experiments running under the pressure of the enormous data
streams that the HL-LHC will generate, we cannot ignore its
potential negative impact. We aim to provide a risk assessment
that is grounded in data, thus we ask the reader to excuse the
slight technical turn of this section, a high-level summary can
be found in [VII]. There are several ways in which the HL-
LHC upgrade will impact CERN’s energy needs.

1) L1 triggers: the new hardware-level triggers will employ
hundreds of high-end FPGA boards. Input bandwidth
jumps from 2 Tb/s to 63 Tb/s, processing this volume
requires significantly more electricity regardless of the
algorithm. It is conservatively estimated that this system
will perform 25 billion ML inferences per second. Even
at extreme efficiency, this generates a substantial heat
load that must be cooled (cooling often doubles the
power cost).

2) High-level triggers: this stage is moving toward hetero-
geneous computing (CPUs + GPUs). Considering that
the triggers for the experiment “Allen” use 500 GPUs
to process 5 TB/s and scaling this to HL-LHC levels,
we expect the need for a farm of thousands of GPUs.

3) Global computing footprint: the trigger output drives the
offline computing needs. It’s estimated that computing
resources (storage and CPUs) will need to increase by
3-4x by 2030 and 10x by 2041. This implies a mas-
sive increase in electricity and hardware manufacturing
carbon emissions.

4) Training: while running the trigger takes power, training
these massive deep learning models requires repeated
passes over exabytes of data. If models are retrained
frequently (e.g., every few weeks to adapt to detector
aging), the carbon cost of training on large GPU clus-
ters becomes a non-negligible part of the experiment’s
footprint.

The benefit that ML techniques might bring to HL-LHC is not
just better physics, but energy avoidance. By being smarter at
the trigger level, the system avoids wasting energy processing
and storing junk data downstream.

1) Background rejection: At HL-LHC, a dumb trigger
would be overwhelmed by background noise. To keep
the output rate manageable, it would have to raise energy
thresholds, missing the Higgs boson or Dark Matter
signals entirely. ML algorithms (like Boosted Decision
Trees on FPGAs) can distinguish interesting data from
noise with 30-50% better background rejection for the
same signal efficiency compared to traditional methods.
This allows the trigger to lower energy thresholds with-
out losing the physics signal.

2) FPGA vs. GPU efficiency: Recent benchmarks highlight
why the FPGA-based ML approach is actually a green
choice compared to alternatives: for particle tracking,
FPGASs running ML models have shown they can per-
form inference in microsecond latency with significantly
less power per inference than a GPU doing the same
task. Furthermore, FPGAs allow for quantization (re-
ducing precision from 32-bit float to fixed-point 6-bit or
8-bit integers). This reduces the resource usage on the
chip by factor of 2—4, directly translating to lower power
consumption for the same math.

3) Storage reduction: the most energy-expensive action in
the experiment is storing data on disk for decades. A
smarter ML trigger acts as a high-precision filter. By
rejecting background events earlier, the experiment saves
the massive energy cost of transmitting, storing, and
processing petabytes of uninteresting data.

Is ML a net negative for the environment? Likely no, when
viewed holistically. While the power consumption of the
trigger racks will undoubtedly rise, the efficiency improves
dramatically. Without ML, the LHC would either have to run
for many more years to gather the same amount of good
physics data (costing years of accelerator power), or require an
even larger offline computing grid to filter through a noisier
dataset. ML in the trigger effectively front-loads the energy
cost to the most efficient hardware (FPGAs), saving energy
in the massive downstream data centers. What is driving
the environmental risk is not ML but the HL-LHC upgrade
itself but it is not for us in this report to assess whether the
physical insight is worth the increased energy consumption.
The only helpful thing within our reach was to optimize
our kernels to the fullest knowing that at these scales, such
optimizations might actually make a noticeable difference in
energy consumptions.

Memory (MB)

Keras—

O PyTorch—

VIII. APPENDIX

—ﬂ Parser H RModel

code

SOFIE IR

€ ONNX—

Inference

Generator

Figure 1. The SOFIE workflow for generating optimized inference code [Lup+25].

180
160

T

—e— SOFIE

140
120
100
80
60
40
20

—e— ONNXRuntime

T‘TTT‘TTT‘TTT‘TTT‘TTT‘TTTTTTTTTTT‘

T

1ll11l11llllllllllllllllllllllllll

P - L
200 400

P -
600

L L1]
800 1000

Number of inputs

(a) Benchmarking memory for ATLAS GN2 [Lup+25].

200

150

Time/event (ms)

TTTT‘TTTT‘

100

T

T

T

—e— SOFIE OpenBlas
—e— SOFIE Blis+VDT
—¢— ONNXRuntime

50

‘TTTT‘

llllllllllllllllllll

L L L
200 400 600

L L1
800 1000

Number of inputs

(b) Benchmarking latency for ATLAS GN2 [Lup+25].

Feature

Dell Latitude 7400

MacBook Air M3

Lenovo Legion 5i

Accelerator Device

Intel Core i7-8665U

Apple M3 (8-core)

NVIDIA GTX 1650TI

Architecture x86_64 (Whiskey Lake) | ARM64 (Apple Silicon) | CUDA (Turing)

Alpaka Backend CpuTbbBlocks CpuTbbBlocks GpuCudaRt

Compute Units 4 Cores / 8 Threads 4 Perf. + 4 Eff. Cores 1024 CUDA Cores (16 SMs)
Memory Capacity | 16 GB DDR4 8 GB Unified Memory | 4 GB GDDR6 (VRAM)

Table T

SPECIFICS OF TESTING DEVICES.

Size Dell Latitude 7400 MacBook Air M3 Lenovo Legion Si

Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup
128 2.06 1.46 1.40 4.49 0.09 48.43 35 0.002 1572.72
256 7.70 1.95 3.96 11.35 1.5 7.58 11.88 6.38 1.86
512 16.19 7.57 2.14 8.89 16.48 0.54 27.35 33.03 0.83
1024 11.91 9.05 1.32 10.34 32.06 0.32 44.13 55.5 0.8
2048 13.51 10.51 1.29 5.29 35.79 0.15 67.08 168.96 0.40
4096 13.67 10.62 1.29 4.51 36.17 0.12 69.18 173.02 0.40
8192 13.91 12.34 1.13 2.60 58.78 0.04 61.09 173.45 0.35

Table IT
BENCHMARKING RESULTS FOR TRIVIAL KERNEL: MEMORY BANDWIDTH FOR ALPAKA AND PYTORCH ACROSS DIFFERENT ARCHITECTURES AND
RELATIVE SPEEDUP.

Size Dell Latitude 7400 MacBook Air M3 Lenovo Legion 5i
Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup
128 1.60 1.64 0.97 2.45 0.16 14.92 4.20 0.03 146.95
256 1.47 4.70 0.31 8.18 5.02 1.63 6.51 89.86 0.07
512 2.24 8.45 0.26 8.94 8.94 1.00 7.72 59.51 0.13
1024 2.54 8.90 0.29 5.12 11.21 0.46 8.14 168.83 0.05
2048 2.86 9.17 0.31 3.43 15.45 0.22 8.49 125.86 0.07
4096 3.01 14.30 0.21 2.86 33.03 0.09 8.64 161.42 0.05
8192 3.12 13.16 0.24 2.15 46.05 0.05 8.49 3.95 2.15
Table III

BENCHMARKING RESULTS FOR CONCAT KERNEL: MEMORY BANDWIDTH FOR ALPAKA AND PYTORCH ACROSS DIFFERENT ARCHITECTURES AND
RELATIVE SPEEDUP.

Size Dell Latitude 7400 MacBook Air M3 Lenovo Legion 5i

Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup
128 0.85 0.21 4.10 0.95 0.01 102.79 0.65 0.00006 9975.93
256 1.05 0.70 1.49 3.62 1.98 1.83 3.41 0.87 3.93
512 1.45 321 0.45 14.81 2.17 6.83 8.56 0.14 59.77
1024 2.19 3.84 0.57 25.84 10.87 2.38 20.11 0.11 187.48
2048 3.30 4.05 0.81 31.33 11.11 2.82 29.27 5.88 4.98
4096 4.09 4.10 1.00 38.80 13.60 2.85 36.12 7.86 4.6
8192 4.61 3.67 1.26 39.09 17.41 2.24 37.58 18.15 2.07

Table IV

BENCHMARKING RESULTS FOR TOPK KERNEL: MEMORY BANDWIDTH FOR ALPAKA AND PYTORCH ACROSS DIFFERENT ARCHITECTURES AND
RELATIVE SPEEDUP.

Size Dell Latitude 7400 MacBook Air M3 Lenovo Legion Si
Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup

128 3.68 1.01 3.65 3.09 0.01 413.43 3.34 0.01 577.86
256 3.14 2.17 1.44 8.39 5.37 1.56 5.02 39 1.29
512 2.14 5.78 0.37 9.24 0.91 10.14 26.77 23.58 1.14
1024 2.00 4.85 0.41 9.16 2.76 3.32 52.89 31.51 1.68
2048 0.83 1.80 0.46 9.88 1.06 9.33 66.26 55.37 1.20
4096 0.39 2.29 0.17 5.81 0.92 6.32 59.81 66.77 0.90
8192 0.25 1.85 0.14 443 6.38 0.69 62.12 33.71 1.84

Table V
BENCHMARKING RESULTS FOR TRANSPOSE KERNEL: MEMORY BANDWIDTH FOR ALPAKA AND PYTORCH ACROSS DIFFERENT ARCHITECTURES AND
RELATIVE SPEEDUP.

Size Dell Latitude 7400 MacBook Air M3 Lenovo Legion 5i

Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup | Alpaka GB/s | Torch GB/s | Speedup
128 1.13 0.84 1.35 3.67 0.07 53.88 2.86 0.00006 | 42241.49
256 1.13 1.87 0.60 7.94 7.33 1.08 17.16 341 5.03
512 1.36 4.49 0.30 10.61 5.11 2.08 39.28 126.78 0.31
1024 1.69 6.06 0.28 9.34 2.07 4.52 60.66 48.66 1.25
2048 1.70 6.13 0.28 4.27 2.63 1.62 63.65 143.54 0.44
4096 1.77 6.56 0.27 2.50 2.82 0.89 76.27 170.39 0.45
8192 1.98 6.45 0.31 2.16 62.14 0.03 58.04 172.37 0.34

Table VI

BENCHMARKING RESULTS FOR WHERE KERNEL: MEMORY BANDWIDTH FOR ALPAKA AND PYTORCH ACROSS DIFFERENT ARCHITECTURES AND
RELATIVE SPEEDUP.

Feature Current LHC HL-LHC ML impact on energy and environment

Instantaneous luminosity | 2 x 1034 cm—2s~1 7.5 x 10%% cm—2s~1 Risk: higher data rate implies a higher base
power load

Pileup ~ 50 collisions ~ 200 collisions Benefit: ML is essential to efficiently dis-
entangle high pileup

L1 input bandwidth ~ 2 Tb/s ~ 63 Tb/s Risk: massive increase in data transport
power consumption

L1 output rate 100 kHz 750 kHz Risk: 7.5x more data sent to the HLT farm

Processing tech Custom electronics + FPGA | High-end FPGA + GPU farms | Benefit: FPGAs offer higher energy effi-

ciency per inference compared to CPUs

ML Scale Minimal ~ 25 Billion inf/sec Risk: significant thermal load generated by
continuous inference

Table VII
COMPARISON OF LHC vs. HL-LHC TRIGGER SYSTEMS AND ENVIRONMENTAL IMPACT.

//Code generated automatically by TMVA for GPU Inference using ALPAKA from Model file
[Transpose.onnx] at [Tue Dec 16 09:27:23 2025]

#ifndef SOFIE_TRANSPOSE
#define SOFIE_TRANSPOSE

#include <vector>

#include <alpaka/alpaka.hpp>
#include <sofieBLAS/sofieBLAS.hpp>
#include "SOFIE/SOFIE_common.hxx"

using DimlD = alpaka::DimInt<1l>;

namespace SOFIE_Transpose {

//——— ALPAKA Kernels

/)= TRANSPOSE_KERNEI_ALPAKA

struct TransposeKernel {
template<typename TAcc, typename T>
ALPAKA_FN_ACC void operator () (TAcc const& acc, T constx input,
Tx output, const std::size_tx input_strides, const std::size_t=x
output_strides, const std::size_t* input_shape, const
std::size_t* output_shape, const std::size_t* perm, const
std::size_t ndim) const {

using DimAcc = alpaka::Dim<TAcc>;

using IdxAcc = alpaka::Idx<TAcc>;

constexpr std::size_t D = static_cast<std::size_t>(DimAcc::value);
alpaka::Vec<DimAcc, IdxAcc> shapeVec({};

for (std::size_t d = 0; d < D; ++d) shapeVec[d] = output_shapeld];
auto elements = alpaka::uniformElementsND (acc, shapeVec);

for (auto consts& idx : elements) {

std::size_t input_idx = 0;

std::size_t output_idx = 0;

for (std::size_t d = 0; d < D; ++d) {
std::size_t out_coord = idx[d];
std::size_t in_axis = perm([d];
input_idx += out_coord * input_strides[in_axis];
output_idx += out_coord » output_strides[d];

}
output [output_idx] = input[input_idx];

Vi

template <typename tagAcc>
struct Session {
using Idx = std::size_t;
using Dim = alpaka::DimInt<1l>;
using Acc = alpaka::TagToAcc<tagAcc, Dim, Idx>;

using DevAcc = alpaka::Dev<Acc>;
using QueueProperty = alpaka::NonBlocking;
using QueueAcc = alpaka::Queue<Acc, QueueProperty>;

alpaka::Platform<Acc> const platform{};

DevAcc devAcc = alpaka::getDevByIdx (platform, O0);
alpaka::PlatformCpu platformHost({};

alpaka::DevCpu hostAcc = alpaka::getDevByIdx(platformHost, O0);
QueueAcc queue{devAcc};

Idx threadsPerBlock = 256;

using Ext1lD = alpaka::Vec<Dim, Idx>;
using Vec = alpaka::Vec<Dim, Idx>;

//—-—— declare and allocate the intermediate tensors
BufF1D deviceBuf_output = alpaka::allocBuf<float, size_t>(devAcc, ExtlD::all (Idx{24}));

Session(std::string = "") {
//---- allocate the intermediate dynamic tensors
alpaka::wait (queue);

TransposeKernel transposeKernel;

alpaka::Buf<Acc, float, Dim, Idx> infer (BufF1D const deviceBuf_input) {
/)= TRANSPOSE_GPU_ALPAKA
alpaka::WorkDivMembers<Dim, Idx>
workDiv_input (alpaka::Vec<Dim, Idx>::all(24 + 256 - 1) / 256),
alpaka::Vec<Dim, Idx>::all(256), alpaka::Vec<Dim, Idx>::all(l));
alpaka::exec<Acc> (queue, workDiv_input, transposeKernel,
alpaka::getPtrNative (deviceBuf_input),
alpaka::getPtrNative (deviceBuf_output), {12, 12, 4, 1}, {12, 4, 1, 1}, {2, 1, 3, 4},
{0, 2, 3, 1}, 4);

alpaka::wait (queue);
return deviceBuf_output;

Vi // end of Session
} //SOFIE_Transpose

#endif // SOFIE_TRANSPOSE

[Bla+02]
[CD19]
[Fol+24]
[Girl6]

[Gov+22]

[Har+25]

[LSM25]
[Lup+25]
[MBS+24]
[McK+25]
[MLS+24]
[QG20]

[RG22]

[SH22]

[Thel7a]

[Thel7b]
[The21]
[The23a]

[The23b]

[The25]

Listing 1. Transpose operator generated by SOFIE.

REFERENCES

L Susan Blackford et al. “An updated set of basic linear algebra subprograms (BLAS)”. In: ACM Transactions
on Mathematical Software 28.2 (2002), pp. 135-151.

Pablo de Castro and Tommaso Dorigo. “INFERNO: Inference-Aware Neural Optimisation”. In: Comput. Phys.
Commun. 244 (2019), pp. 170-179. pot1: 10.1016/j.cpc.2019.06.007. arXiv: 1806.04743 [stat .ML].

Fritjof Folkeson et al. “Baler - Machine Learning Based Compression of Scientific Data”. In: EPJ Web Conf. 295
(2024), p. 09023. por: 10.1051/epjconf/202429509023.

Maria Girone. Big Data Analytics and the LHC. Keynote presentation at the ACM International Conference on
Computing Frontiers (CF’16). 2016. URL: http://helper.ipam.ucla.edu/publications/dmc2017/dmc2017_14378.pdf.
Ekaterina Govorkova et al. “LHC physics dataset for unsupervised New Physics detection at 40 MHz”. In: Scientific
Data 9.1 (2022). States: “This stage rejects more than 98% of the events...”, p. 118. DoI: 10.1038/s41597-022-
01187-8.

C. Hardebolle et al. Digital Ethics Canvas. 2025. URL: https://www.epfl.ch/education/educational-initiatives/cede/
open-and-accessible-education/digital-ethics/a- visual-tool-for- assessing- ethical-risks/the- digital - ethics - canvas-
how-to/ (visited on 11/16/2025).

Enrico Lupi, Sanjiban Sengupta, and Lorenzo Moneta. “Benchmark Studies of Machine Learning Inference using
SOFIE”. In: EPJ Web Conf. 337 (2025), p. 01183. poI: 10.1051/epjconf/202533701183.

Enrico Lupi et al. Enhancements in ML Inference through graph optimizations and heterogeneous architectures.
https://indi.to/hQpPY. 2025.

Lorenzo Moneta, Andrea Bocci, Sanjiban Sengupta, et al. sofieBLAS: an abstract C++ (header-only) interface
for BLAS operations targeting heterogeneous architectures. https://github.com/MLAEP/sofieBLAS. 2024.

Peter McKeown et al. A Generalisable Generative Model for Multi-Detector Calorimeter Simulation (CaloDiT).
2025. arXiv: 2509.07700 [hep-ex].

Lorenzo Moneta, Enrico Lupi, Sanjiban Sengupta, et al. SOFIE: System for Optimized Fast Inference code Emit.
https://github.com/ML4EP/SOFIE. 2024.

Huilin Qu and Loukas Gouskos. “ParticleNet: Jet Tagging via Particle Clouds”. In: Phys. Rev. D 101.5 (2020),
p- 056019. pOT: 10.1103/PhysRevD.101.056019. arXiv: 1902.08570 [hep-ph].

Harry Rohrich and Jochen Gemmler. “The Federation — A novel machine learning technique applied to data from
the Higgs Boson Machine Learning Challenge”. In: Proceedings of the 21st International Workshop on Advanced
Computing and Analysis Techniques in Physics Research (ACAT 2022). 2022. URL: https://indico.cern.ch/event/
1106990/papers/4998136/.

Nathan Simpson and Lukas Heinrich. “NEOS: Neural End-to-End Optimized Statistics”. In: Mach. Learn.: Sci.
Technol. 3.2 (2022), p. 025008. po1: 10.1088/2632-2153/ac64ba.

The ATLAS Collaboration. Technical Design Report for the Phase-Il Upgrade of the ATLAS TDAQ System.
Technical Design Report CERN-LHCC-2017-020; ATLAS-TDR-029. CERN, 2017. URL: https://cds.cern.ch/
record/2285584.

The CMS Collaboration. “The CMS trigger system”. In: Journal of Instrumentation 12.01 (2017). Describes the
hardware-based physics algorithms (Level-1), P01020. por: 10.1088/1748-0221/12/01/P01020.

The CMS Collaboration. ParticleNet jet mass regression. CMS Detector Performance Note CMS-DP-2021-017.
CERN, 2021. URL: https://cds.cern.ch/record/2777008.

The ATLAS Collaboration. “Deep generative models for fast photon shower simulation in ATLAS”. In: Comput.
Softw. Big Sci. 7.1 (2023), p. 10. Do1: 10.1007/s41781-023-00106-9.

The ATLAS Collaboration. Transformer Neural Networks for Identifying Boosted Higgs Bosons decaying into bb
and cc in ATLAS. ATLAS Public Note ATL-PHYS-PUB-2023-021. CERN, 2023. URL: https://cds.cern.ch/record/
2866601.

The ATLAS Collaboration. “Transforming jet flavour tagging at ATLAS”. In: Nature Communications in press
(2025). arXiv: 2505.19689 [hep-ex].

https://doi.org/10.1016/j.cpc.2019.06.007
https://arxiv.org/abs/1806.04743
https://doi.org/10.1051/epjconf/202429509023
http://helper.ipam.ucla.edu/publications/dmc2017/dmc2017_14378.pdf
https://doi.org/10.1038/s41597-022-01187-8
https://doi.org/10.1038/s41597-022-01187-8
https://www.epfl.ch/education/educational-initiatives/cede/open-and-accessible-education/digital-ethics/a-visual-tool-for-assessing-ethical-risks/the-digital-ethics-canvas-how-to/
https://www.epfl.ch/education/educational-initiatives/cede/open-and-accessible-education/digital-ethics/a-visual-tool-for-assessing-ethical-risks/the-digital-ethics-canvas-how-to/
https://www.epfl.ch/education/educational-initiatives/cede/open-and-accessible-education/digital-ethics/a-visual-tool-for-assessing-ethical-risks/the-digital-ethics-canvas-how-to/
https://doi.org/10.1051/epjconf/202533701183
https://indi.to/hQpPY
https://github.com/ML4EP/sofieBLAS
https://arxiv.org/abs/2509.07700
https://github.com/ML4EP/SOFIE
https://doi.org/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/1902.08570
https://indico.cern.ch/event/1106990/papers/4998136/
https://indico.cern.ch/event/1106990/papers/4998136/
https://doi.org/10.1088/2632-2153/ac64ba
https://cds.cern.ch/record/2285584
https://cds.cern.ch/record/2285584
https://doi.org/10.1088/1748-0221/12/01/P01020
https://cds.cern.ch/record/2777008
https://doi.org/10.1007/s41781-023-00106-9
https://cds.cern.ch/record/2866601
https://cds.cern.ch/record/2866601
https://arxiv.org/abs/2505.19689

	Introduction
	Background
	Methodology
	Single-kernel tests & benchmarks
	Unit Testing
	Performance Benchmarks

	Conclusion
	Future work
	Ethical risk assessment
	Appendix

