Pseudo-Random Number Generators
In the following example, we will explore the PRNGs available in ChaoticEncryption.jl. The API documentation for ChaoticEncryption.jl is available here.
Let us start by adding in the julia packages we will be needing -
# install TestImages for this tutorial
# julia> using Pkg
# julia> Pkg.add("TestImages")
# install ChaoticEncryption.jl if you haven't already!
# julia> Pkg.add("ChaoticEncryption")
julia> using TestImages, ChaoticEncryption
PRNGs in ChaoticEncryption.jl
Currently, ChaoticEncryption.jl includes 2 PRNGs, which are-
- Logistic Map
- Lorenz System of Differential Equations
We will be adding more of them soon! If you stumble upon an interesting PRNG, feel free to create an issue or a pull request for the same!
Logistic Map
As per the documentation, logistic_key generates a vectors of pseudo-random numbers using the Logistic Map.
The function uses the following equation to generate pseudo-random numbers -
\[x_{n+1} = r * x_{n} * (1 - x_{n})\]
The function takes in the following arguments -
x_init::Float64: Initial value of x. x ϵ (0, 1).r::Float64: A constant value. Values > 4 usually results in pseudo-random numbers.num_keys::Int64: Number of keys to be generated.scaling_factor::Float64=10.0^16: Factor to be multiplied to the generated value of pseudo-random number. Ideally, the factor should be > upper_bound.upper_bound::Float64=256.0: Upper bound of keys (not included). Use 256 for encrypting images as the RGB values of a pixel varies from 0 to 255.
And returns the following Vector -
keys::Vector{Int64}:: Generated pseudo-random keys.
Using logistic_key
After going through the documentation, let us use the function logistic_key with the following aarguments -
- x_init = 0.01
- r = 3.97
- num_keys = 20
julia> keys = logistic_key(0.01, 3.97, 20)
20-element Vector{Int64}:
0
44
7
26
14
224
16
250
162
211
200
217
97
132
134
100
135
232
122
102This returns a 1 dimensional Vector of pseudo-random Int64 elements ranging from 0 - 255 (as the RGB values of an image range from 0 - 255)!
Generating pseudo-random keys for an image
Now we can try to generate a pseudo-random key for each pixel in a given image. Let us load an image using the TestImages package for this!
julia> img = testimage("cameraman");
julia> height, width = size(img)
(512, 512)The image can be viewed using ImageView.jl -
julia> using ImageView
julia> imshow(img)
Generating a key for each pixel in the image
julia> keys = logistic_key(0.01, 3.67, height * width)
262144-element Vector{Int64}:
0
68
135
20
13
140
197
182
248
229
⋮
168
182
77
83
74
176
27
251
206We can now use these keys to encrypt the image! Encryption and decryption will be covered in another example :)
Lorenz System of Differential Equations
As per the documentation, lorenz_key generates 3 vectors of pseudo-random numbers using Lorenz system of differential equations.
The function uses the following system of differential equations to generate pseudo-random numbers -
\[\frac{dx}{dt} = α * (y - x)\]
\[\frac{dy}{dt} = x * (ρ - z) - y\]
\[\frac{dz}{dt} = x * y - β * z\]
The function takes in the following arguments -
x_init::Float64: Initial value of x.y_init::Float64: Initial value of y.z_init::Float64:Initial value of z.num_keys::Int64: Number of keys (in a single list) to be generated.α::Float64: Constant associated with Lorenz system of differential equations.ρ::Float64: Constant associated with Lorenz system of differential equations.β::Float64: Constant associated with Lorenz system of differential equations.scaling_factor::Float64=10.0^16: Factor to be multiplied to the generated value of pseudo-random number. Ideally, the factor should be > upper_bound.upper_bound::Float64=256.0: Upper bound of keys (not included). Use 256 for encrypting images as the RGB values of a pixel varies from 0 to 255.
And returns the following Vectors
x::Vector{Int64}: Generated pseudo-random keys corresponding to x values.y::Vector{Int64}: Generated pseudo-random keys corresponding to y values.z::Vector{Int64}: Generated pseudo-random keys corresponding to z values.
Using lorenz_key
After going through the documentation, let us use the function lorenz_key with the following aarguments -
- x_init = 0.01
- y_init = 0.02
- z_init = 0.03
- num_keys = 20
You can play with other arguments as well!
julia> keys = lorenz_key(0.01, 0.02, 0.03, 20)
([0, 0, 256, 24, 129, 42, 54, 134, 43, 179, 85, 19, 24, 44, 71, 210, 238, 152, 22, 27], [0, 0, 240, 55, 25, 163, 89, 243, 123, 5, 197, 64, 227, 54, 188, 226, 154, 134, 64, 69], [0, 0, 80, 227, 178, 204, 89, 33, 144, 139, 105, 208, 108, 155, 61, 254, 57, 102, 149, 47])Generating pseudo-random keys for an image
Now we can try to generate a pseudo-random key for each pixel in a given image. Let us load an image using the TestImages package for this!
julia> img = testimage("cameraman");
julia> height, width = size(img)
(512, 512)Generating a key for each pixel in the image
julia> x, y, z = lorenz_key(0.01, 0.02, 0.03, height * width)
([0, 0, 256, 24, 129, 42, 54, 134, 43, 179 … 46, 94, 18, 206, 68, 98, 72, 10, 248, 136], [0, 0, 240, 55, 25, 163, 89, 243, 123, 5 … 4, 112, 116, 100, 108, 92, 236, 80, 152, 144], [0, 0, 80, 227, 178, 204, 89, 33, 144, 139 … 128, 48, 176, 128, 176, 72, 168, 32, 208, 112])lorenz_key returns a Tuple with each element being an Vector{Int64}. Thus, it returns a variable of the type Tuple{Vector{Int64}, Vector{Int64}, Vector{Int64}}.
julia> x
262144-element Vector{Int64}:
0
0
256
24
129
42
54
134
43
179
⋮
94
18
206
68
98
72
10
248
136A notebook version of this tutorial is available here. Don't forget to star ChaoticEncryption.jl :)
The complete API documentation is available here.